1: /* 2: floating point Bessel's function 3: of the first and second kinds 4: of order one 5: 6: j1(x) returns the value of J1(x) 7: for all real values of x. 8: 9: There are no error returns. 10: Calls sin, cos, sqrt. 11: 12: There is a niggling bug in J1 which 13: causes errors up to 2e-16 for x in the 14: interval [-8,8]. 15: The bug is caused by an inappropriate order 16: of summation of the series. rhm will fix it 17: someday. 18: 19: Coefficients are from Hart & Cheney. 20: #6050 (20.98D) 21: #6750 (19.19D) 22: #7150 (19.35D) 23: 24: y1(x) returns the value of Y1(x) 25: for positive real values of x. 26: For x<=0, error number EDOM is set and a 27: large negative value is returned. 28: 29: Calls sin, cos, sqrt, log, j1. 30: 31: The values of Y1 have not been checked 32: to more than ten places. 33: 34: Coefficients are from Hart & Cheney. 35: #6447 (22.18D) 36: #6750 (19.19D) 37: #7150 (19.35D) 38: */ 39: 40: #include <math.h> 41: #include <errno.h> 42: 43: int errno; 44: static double pzero, qzero; 45: static double tpi = .6366197723675813430755350535e0; 46: static double pio4 = .7853981633974483096156608458e0; 47: static double p1[] = { 48: 0.581199354001606143928050809e21, 49: -.6672106568924916298020941484e20, 50: 0.2316433580634002297931815435e19, 51: -.3588817569910106050743641413e17, 52: 0.2908795263834775409737601689e15, 53: -.1322983480332126453125473247e13, 54: 0.3413234182301700539091292655e10, 55: -.4695753530642995859767162166e7, 56: 0.2701122710892323414856790990e4, 57: }; 58: static double q1[] = { 59: 0.1162398708003212287858529400e22, 60: 0.1185770712190320999837113348e20, 61: 0.6092061398917521746105196863e17, 62: 0.2081661221307607351240184229e15, 63: 0.5243710262167649715406728642e12, 64: 0.1013863514358673989967045588e10, 65: 0.1501793594998585505921097578e7, 66: 0.1606931573481487801970916749e4, 67: 1.0, 68: }; 69: static double p2[] = { 70: -.4435757816794127857114720794e7, 71: -.9942246505077641195658377899e7, 72: -.6603373248364939109255245434e7, 73: -.1523529351181137383255105722e7, 74: -.1098240554345934672737413139e6, 75: -.1611616644324610116477412898e4, 76: 0.0, 77: }; 78: static double q2[] = { 79: -.4435757816794127856828016962e7, 80: -.9934124389934585658967556309e7, 81: -.6585339479723087072826915069e7, 82: -.1511809506634160881644546358e7, 83: -.1072638599110382011903063867e6, 84: -.1455009440190496182453565068e4, 85: 1.0, 86: }; 87: static double p3[] = { 88: 0.3322091340985722351859704442e5, 89: 0.8514516067533570196555001171e5, 90: 0.6617883658127083517939992166e5, 91: 0.1849426287322386679652009819e5, 92: 0.1706375429020768002061283546e4, 93: 0.3526513384663603218592175580e2, 94: 0.0, 95: }; 96: static double q3[] = { 97: 0.7087128194102874357377502472e6, 98: 0.1819458042243997298924553839e7, 99: 0.1419460669603720892855755253e7, 100: 0.4002944358226697511708610813e6, 101: 0.3789022974577220264142952256e5, 102: 0.8638367769604990967475517183e3, 103: 1.0, 104: }; 105: static double p4[] = { 106: -.9963753424306922225996744354e23, 107: 0.2655473831434854326894248968e23, 108: -.1212297555414509577913561535e22, 109: 0.2193107339917797592111427556e20, 110: -.1965887462722140658820322248e18, 111: 0.9569930239921683481121552788e15, 112: -.2580681702194450950541426399e13, 113: 0.3639488548124002058278999428e10, 114: -.2108847540133123652824139923e7, 115: 0.0, 116: }; 117: static double q4[] = { 118: 0.5082067366941243245314424152e24, 119: 0.5435310377188854170800653097e22, 120: 0.2954987935897148674290758119e20, 121: 0.1082258259408819552553850180e18, 122: 0.2976632125647276729292742282e15, 123: 0.6465340881265275571961681500e12, 124: 0.1128686837169442121732366891e10, 125: 0.1563282754899580604737366452e7, 126: 0.1612361029677000859332072312e4, 127: 1.0, 128: }; 129: 130: double 131: j1(arg) double arg;{ 132: double xsq, n, d, x; 133: double sin(), cos(), sqrt(); 134: int i; 135: 136: x = arg; 137: if(x < 0.) x = -x; 138: if(x > 8.){ 139: asympt(x); 140: n = x - 3.*pio4; 141: n = sqrt(tpi/x)*(pzero*cos(n) - qzero*sin(n)); 142: if(arg <0.) n = -n; 143: return(n); 144: } 145: xsq = x*x; 146: for(n=0,d=0,i=8;i>=0;i--){ 147: n = n*xsq + p1[i]; 148: d = d*xsq + q1[i]; 149: } 150: return(arg*n/d); 151: } 152: 153: double 154: y1(arg) double arg;{ 155: double xsq, n, d, x; 156: double sin(), cos(), sqrt(), log(), j1(); 157: int i; 158: 159: errno = 0; 160: x = arg; 161: if(x <= 0.){ 162: errno = EDOM; 163: return(-HUGE); 164: } 165: if(x > 8.){ 166: asympt(x); 167: n = x - 3*pio4; 168: return(sqrt(tpi/x)*(pzero*sin(n) + qzero*cos(n))); 169: } 170: xsq = x*x; 171: for(n=0,d=0,i=9;i>=0;i--){ 172: n = n*xsq + p4[i]; 173: d = d*xsq + q4[i]; 174: } 175: return(x*n/d + tpi*(j1(x)*log(x)-1./x)); 176: } 177: 178: static 179: asympt(arg) double arg;{ 180: double zsq, n, d; 181: int i; 182: zsq = 64./(arg*arg); 183: for(n=0,d=0,i=6;i>=0;i--){ 184: n = n*zsq + p2[i]; 185: d = d*zsq + q2[i]; 186: } 187: pzero = n/d; 188: for(n=0,d=0,i=6;i>=0;i--){ 189: n = n*zsq + p3[i]; 190: d = d*zsq + q3[i]; 191: } 192: qzero = (8./arg)*(n/d); 193: }