/* * Copyright (c) 1985 Regents of the University of California. * * Use and reproduction of this software are granted in accordance with * the terms and conditions specified in the Berkeley Software License * Agreement (in particular, this entails acknowledgement of the programs' * source, and inclusion of this notice) with the additional understanding * that all recipients should regard themselves as participants in an * ongoing research project and hence should feel obligated to report * their experiences (good or bad) with these elementary function codes, * using "sendbug 4bsd-bugs@BERKELEY", to the authors. */ #ifndef lint static char sccsid[] = "@(#)cabs.c 1.2 (Berkeley) 8/21/85"; #endif not lint /* CABS(Z) * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER Z = X + iY * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) * CODED IN C BY K.C. NG, 11/28/84. * REVISED BY K.C. NG, 7/12/85. * * Required kernel function : * hypot(x,y) * * Method : * cabs(z) = hypot(x,y) . */ double cabs(z) struct { double x, y;} z; { double hypot(); return(hypot(z.x,z.y)); } /* HYPOT(X,Y) * RETURN THE SQUARE ROOT OF X^2 + Y^2 WHERE Z=X+iY * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) * CODED IN C BY K.C. NG, 11/28/84; * REVISED BY K.C. NG, 7/12/85. * * Required system supported functions : * copysign(x,y) * finite(x) * scalb(x,N) * sqrt(x) * * Method : * 1. replace x by |x| and y by |y|, and swap x and * y if y > x (hence x is never smaller than y). * 2. Hypot(x,y) is computed by: * Case I, x/y > 2 * * y * hypot = x + ----------------------------- * 2 * sqrt ( 1 + [x/y] ) + x/y * * Case II, x/y <= 2 * y * hypot = x + -------------------------------------------------- * 2 * [x/y] - 2 * (sqrt(2)+1) + (x-y)/y + ----------------------------- * 2 * sqrt ( 1 + [x/y] ) + sqrt(2) * * * * Special cases: * hypot(x,y) is INF if x or y is +INF or -INF; else * hypot(x,y) is NAN if x or y is NAN. * * Accuracy: * hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units * in the last place). See Kahan's "Interval Arithmetic Options in the * Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics * 1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate * code follows in comments.) In a test run with 500,000 random arguments * on a VAX, the maximum observed error was .959 ulps. * * Constants: * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. */ #ifdef VAX /* VAX D format */ /* static double */ /* r2p1hi = 2.4142135623730950345E0 , Hex 2^ 2 * .9A827999FCEF32 */ /* r2p1lo = 1.4349369327986523769E-17 , Hex 2^-55 * .84597D89B3754B */ /* sqrt2 = 1.4142135623730950622E0 ; Hex 2^ 1 * .B504F333F9DE65 */ static long r2p1hix[] = { 0x8279411a, 0xef3299fc}; static long r2p1lox[] = { 0x597d2484, 0x754b89b3}; static long sqrt2x[] = { 0x04f340b5, 0xde6533f9}; #define r2p1hi (*(double*)r2p1hix) #define r2p1lo (*(double*)r2p1lox) #define sqrt2 (*(double*)sqrt2x) #else /* IEEE double format */ static double r2p1hi = 2.4142135623730949234E0 , /*Hex 2^1 * 1.3504F333F9DE6 */ r2p1lo = 1.2537167179050217666E-16 , /*Hex 2^-53 * 1.21165F626CDD5 */ sqrt2 = 1.4142135623730951455E0 ; /*Hex 2^ 0 * 1.6A09E667F3BCD */ #endif double hypot(x,y) double x, y; { static double zero=0, one=1, small=1.0E-18; /* fl(1+small)==1 */ static ibig=30; /* fl(1+2**(2*ibig))==1 */ double copysign(),scalb(),logb(),sqrt(),t,r; int finite(), exp; if(finite(x)) if(finite(y)) { x=copysign(x,one); y=copysign(y,one); if(y > x) { t=x; x=y; y=t; } if(x == zero) return(zero); if(y == zero) return(x); exp= logb(x); if(exp-(int)logb(y) > ibig ) /* raise inexact flag and return |x| */ { one+small; return(x); } /* start computing sqrt(x^2 + y^2) */ r=x-y; if(r>y) { /* x/y > 2 */ r=x/y; r=r+sqrt(one+r*r); } else { /* 1 <= x/y <= 2 */ r/=y; t=r*(r+2.0); r+=t/(sqrt2+sqrt(2.0+t)); r+=r2p1lo; r+=r2p1hi; } r=y/r; return(x+r); } else if(y==y) /* y is +-INF */ return(copysign(y,one)); else return(y); /* y is NaN and x is finite */ else if(x==x) /* x is +-INF */ return (copysign(x,one)); else if(finite(y)) return(x); /* x is NaN, y is finite */ else if(y!=y) return(y); /* x and y is NaN */ else return(copysign(y,one)); /* y is INF */ } /* A faster but less accurate version of cabs(x,y) */ #if 0 double hypot(x,y) double x, y; { static double zero=0, one=1; small=1.0E-18; /* fl(1+small)==1 */ static ibig=30; /* fl(1+2**(2*ibig))==1 */ double copysign(),scalb(),logb(),sqrt(),temp; int finite(), exp; if(finite(x)) if(finite(y)) { x=copysign(x,one); y=copysign(y,one); if(y > x) { temp=x; x=y; y=temp; } if(x == zero) return(zero); if(y == zero) return(x); exp= logb(x); x=scalb(x,-exp); if(exp-(int)logb(y) > ibig ) /* raise inexact flag and return |x| */ { one+small; return(scalb(x,exp)); } else y=scalb(y,-exp); return(scalb(sqrt(x*x+y*y),exp)); } else if(y==y) /* y is +-INF */ return(copysign(y,one)); else return(y); /* y is NaN and x is finite */ else if(x==x) /* x is +-INF */ return (copysign(x,one)); else if(finite(y)) return(x); /* x is NaN, y is finite */ else if(y!=y) return(y); /* x and y is NaN */ else return(copysign(y,one)); /* y is INF */ } #endif