/* * Copyright (c) 1985 Regents of the University of California. * * Use and reproduction of this software are granted in accordance with * the terms and conditions specified in the Berkeley Software License * Agreement (in particular, this entails acknowledgement of the programs' * source, and inclusion of this notice) with the additional understanding * that all recipients should regard themselves as participants in an * ongoing research project and hence should feel obligated to report * their experiences (good or bad) with these elementary function codes, * using "sendbug 4bsd-bugs@BERKELEY", to the authors. */ #ifndef lint static char sccsid[] = "@(#)trig.c 1.2 (Berkeley) 8/22/85"; #endif not lint /* SIN(X), COS(X), TAN(X) * RETURN THE SINE, COSINE, AND TANGENT OF X RESPECTIVELY * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) * CODED IN C BY K.C. NG, 1/8/85; * REVISED BY W. Kahan and K.C. NG, 8/17/85. * * Required system supported functions: * copysign(x,y) * finite(x) * drem(x,p) * * Static kernel functions: * sin__S(z) ....sin__S(x*x) return (sin(x)-x)/x * cos__C(z) ....cos__C(x*x) return cos(x)-1-x*x/2 * * Method. * Let S and C denote the polynomial approximations to sin and cos * respectively on [-PI/4, +PI/4]. * * SIN and COS: * 1. Reduce the argument into [-PI , +PI] by the remainder function. * 2. For x in (-PI,+PI), there are three cases: * case 1: |x| < PI/4 * case 2: PI/4 <= |x| < 3PI/4 * case 3: 3PI/4 <= |x|. * SIN and COS of x are computed by: * * sin(x) cos(x) remark * ---------------------------------------------------------- * case 1 S(x) C(x) * case 2 sign(x)*C(y) S(y) y=PI/2-|x| * case 3 S(y) -C(y) y=sign(x)*(PI-|x|) * ---------------------------------------------------------- * * TAN: * 1. Reduce the argument into [-PI/2 , +PI/2] by the remainder function. * 2. For x in (-PI/2,+PI/2), there are two cases: * case 1: |x| < PI/4 * case 2: PI/4 <= |x| < PI/2 * TAN of x is computed by: * * tan (x) remark * ---------------------------------------------------------- * case 1 S(x)/C(x) * case 2 C(y)/S(y) y=sign(x)*(PI/2-|x|) * ---------------------------------------------------------- * * Notes: * 1. S(y) and C(y) were computed by: * S(y) = y+y*sin__S(y*y) * C(y) = 1-(y*y/2-cos__C(x*x)) ... if y*y/2 < thresh, * = 0.5-((y*y/2-0.5)-cos__C(x*x)) ... if y*y/2 >= thresh. * where * thresh = 0.5*(acos(3/4)**2) * * 2. For better accuracy, we use the following formula for S/C for tan * (k=0): let ss=sin__S(y*y), and cc=cos__C(y*y), then * * y+y*ss (y*y/2-cc)+ss * S(y)/C(y) = -------- = y + y * ---------------. * C C * * * Special cases: * Let trig be any of sin, cos, or tan. * trig(+-INF) is NaN, with signals; * trig(NaN) is that NaN; * trig(n*PI/2) is exact for any integer n, provided n*PI is * representable; otherwise, trig(x) is inexact. * * Accuracy: * trig(x) returns the exact trig(x*pi/PI) nearly rounded, where * * Decimal: * pi = 3.141592653589793 23846264338327 ..... * 53 bits PI = 3.141592653589793 115997963 ..... , * 56 bits PI = 3.141592653589793 227020265 ..... , * * Hexadecimal: * pi = 3.243F6A8885A308D313198A2E.... * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 error=.276ulps * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 error=.206ulps * * In a test run with 1,024,000 random arguments on a VAX, the maximum * observed errors (compared with the exact trig(x*pi/PI)) were * tan(x) : 2.09 ulps (around 4.716340404662354) * sin(x) : .861 ulps * cos(x) : .857 ulps * * Constants: * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. */ #ifdef VAX /*thresh = 2.6117239648121182150E-1 , Hex 2^ -1 * .85B8636B026EA0 */ /*PIo4 = 7.8539816339744830676E-1 , Hex 2^ 0 * .C90FDAA22168C2 */ /*PIo2 = 1.5707963267948966135E0 , Hex 2^ 1 * .C90FDAA22168C2 */ /*PI3o4 = 2.3561944901923449203E0 , Hex 2^ 2 * .96CBE3F9990E92 */ /*PI = 3.1415926535897932270E0 , Hex 2^ 2 * .C90FDAA22168C2 */ /*PI2 = 6.2831853071795864540E0 ; Hex 2^ 3 * .C90FDAA22168C2 */ static long threshx[] = { 0xb8633f85, 0x6ea06b02}; #define thresh (*(double*)threshx) static long PIo4x[] = { 0x0fda4049, 0x68c2a221}; #define PIo4 (*(double*)PIo4x) static long PIo2x[] = { 0x0fda40c9, 0x68c2a221}; #define PIo2 (*(double*)PIo2x) static long PI3o4x[] = { 0xcbe34116, 0x0e92f999}; #define PI3o4 (*(double*)PI3o4x) static long PIx[] = { 0x0fda4149, 0x68c2a221}; #define PI (*(double*)PIx) static long PI2x[] = { 0x0fda41c9, 0x68c2a221}; #define PI2 (*(double*)PI2x) #else /* IEEE double */ static double thresh = 2.6117239648121182150E-1 , /*Hex 2^ -2 * 1.0B70C6D604DD4 */ PIo4 = 7.8539816339744827900E-1 , /*Hex 2^ -1 * 1.921FB54442D18 */ PIo2 = 1.5707963267948965580E0 , /*Hex 2^ 0 * 1.921FB54442D18 */ PI3o4 = 2.3561944901923448370E0 , /*Hex 2^ 1 * 1.2D97C7F3321D2 */ PI = 3.1415926535897931160E0 , /*Hex 2^ 1 * 1.921FB54442D18 */ PI2 = 6.2831853071795862320E0 ; /*Hex 2^ 2 * 1.921FB54442D18 */ #endif static double zero=0, one=1, negone= -1, half=1.0/2.0, small=1E-10, /* 1+small**2==1; better values for small: small = 1.5E-9 for VAX D = 1.2E-8 for IEEE Double = 2.8E-10 for IEEE Extended */ big=1E20; /* big = 1/(small**2) */ double tan(x) double x; { double copysign(),drem(),cos__C(),sin__S(),a,z,ss,cc,c; int finite(),k; /* tan(NaN) and tan(INF) must be NaN */ if(!finite(x)) return(x-x); x=drem(x,PI); /* reduce x into [-PI/2, PI/2] */ a=copysign(x,one); /* ... = abs(x) */ if ( a >= PIo4 ) {k=1; x = copysign( PIo2 - a , x ); } else { k=0; if(a < small ) { big + a; return(x); }} z = x*x; cc = cos__C(z); ss = sin__S(z); z = z*half ; /* Next get c = cos(x) accurately */ c = (z >= thresh )? half-((z-half)-cc) : one-(z-cc); if (k==0) return ( x + (x*(z-(cc-ss)))/c ); /* sin/cos */ return( c/(x+x*ss) ); /* ... cos/sin */ } double sin(x) double x; { double copysign(),drem(),sin__S(),cos__C(),a,c,z; int finite(); /* sin(NaN) and sin(INF) must be NaN */ if(!finite(x)) return(x-x); x=drem(x,PI2); /* reduce x into [-PI, PI] */ a=copysign(x,one); if( a >= PIo4 ) { if( a >= PI3o4 ) /* .. in [3PI/4, PI ] */ x=copysign((a=PI-a),x); else { /* .. in [PI/4, 3PI/4] */ a=PIo2-a; /* return sign(x)*C(PI/2-|x|) */ z=a*a; c=cos__C(z); z=z*half; a=(z>=thresh)?half-((z-half)-c):one-(z-c); return(copysign(a,x)); } } /* return S(x) */ if( a < small) { big + a; return(x);} return(x+x*sin__S(x*x)); } double cos(x) double x; { double copysign(),drem(),sin__S(),cos__C(),a,c,z,s=1.0; int finite(); /* cos(NaN) and cos(INF) must be NaN */ if(!finite(x)) return(x-x); x=drem(x,PI2); /* reduce x into [-PI, PI] */ a=copysign(x,one); if ( a >= PIo4 ) { if ( a >= PI3o4 ) /* .. in [3PI/4, PI ] */ { a=PI-a; s= negone; } else /* .. in [PI/4, 3PI/4] */ /* return S(PI/2-|x|) */ { a=PIo2-a; return(a+a*sin__S(a*a));} } /* return s*C(a) */ if( a < small) { big + a; return(s);} z=a*a; c=cos__C(z); z=z*half; a=(z>=thresh)?half-((z-half)-c):one-(z-c); return(copysign(a,s)); } /* sin__S(x*x) * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X) * CODED IN C BY K.C. NG, 1/21/85; * REVISED BY K.C. NG on 8/13/85. * * sin(x*k) - x * RETURN --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded * x * value of pi in machine precision: * * Decimal: * pi = 3.141592653589793 23846264338327 ..... * 53 bits PI = 3.141592653589793 115997963 ..... , * 56 bits PI = 3.141592653589793 227020265 ..... , * * Hexadecimal: * pi = 3.243F6A8885A308D313198A2E.... * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 * * Method: * 1. Let z=x*x. Create a polynomial approximation to * (sin(k*x)-x)/x = z*(S0 + S1*z^1 + ... + S5*z^5). * Then * sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5) * * The coefficient S's are obtained by a special Remez algorithm. * * Accuracy: * In the absence of rounding error, the approximation has absolute error * less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE. * * Constants: * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. * */ #ifdef VAX /*S0 = -1.6666666666666646660E-1 , Hex 2^ -2 * -.AAAAAAAAAAAA71 */ /*S1 = 8.3333333333297230413E-3 , Hex 2^ -6 * .8888888888477F */ /*S2 = -1.9841269838362403710E-4 , Hex 2^-12 * -.D00D00CF8A1057 */ /*S3 = 2.7557318019967078930E-6 , Hex 2^-18 * .B8EF1CA326BEDC */ /*S4 = -2.5051841873876551398E-8 , Hex 2^-25 * -.D73195374CE1D3 */ /*S5 = 1.6028995389845827653E-10 , Hex 2^-32 * .B03D9C6D26CCCC */ /*S6 = -6.2723499671769283121E-13 ; Hex 2^-40 * -.B08D0B7561EA82 */ static long S0x[] = { 0xaaaabf2a, 0xaa71aaaa}; #define S0 (*(double*)S0x) static long S1x[] = { 0x88883d08, 0x477f8888}; #define S1 (*(double*)S1x) static long S2x[] = { 0x0d00ba50, 0x1057cf8a}; #define S2 (*(double*)S2x) static long S3x[] = { 0xef1c3738, 0xbedca326}; #define S3 (*(double*)S3x) static long S4x[] = { 0x3195b3d7, 0xe1d3374c}; #define S4 (*(double*)S4x) static long S5x[] = { 0x3d9c3030, 0xcccc6d26}; #define S5 (*(double*)S5x) static long S6x[] = { 0x8d0bac30, 0xea827561}; #define S6 (*(double*)S6x) #else /* IEEE double */ static double S0 = -1.6666666666666463126E-1 , /*Hex 2^ -3 * -1.555555555550C */ S1 = 8.3333333332992771264E-3 , /*Hex 2^ -7 * 1.111111110C461 */ S2 = -1.9841269816180999116E-4 , /*Hex 2^-13 * -1.A01A019746345 */ S3 = 2.7557309793219876880E-6 , /*Hex 2^-19 * 1.71DE3209CDCD9 */ S4 = -2.5050225177523807003E-8 , /*Hex 2^-26 * -1.AE5C0E319A4EF */ S5 = 1.5868926979889205164E-10 ; /*Hex 2^-33 * 1.5CF61DF672B13 */ #endif static double sin__S(z) double z; { #ifdef VAX return(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6))))))); #else /* IEEE double */ return(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5)))))); #endif } /* cos__C(x*x) * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS) * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X) * CODED IN C BY K.C. NG, 1/21/85; * REVISED BY K.C. NG on 8/13/85. * * x*x * RETURN cos(k*x) - 1 + ----- on [-PI/4,PI/4], where k = pi/PI, * 2 * PI is the rounded value of pi in machine precision : * * Decimal: * pi = 3.141592653589793 23846264338327 ..... * 53 bits PI = 3.141592653589793 115997963 ..... , * 56 bits PI = 3.141592653589793 227020265 ..... , * * Hexadecimal: * pi = 3.243F6A8885A308D313198A2E.... * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 * * * Method: * 1. Let z=x*x. Create a polynomial approximation to * cos(k*x)-1+z/2 = z*z*(C0 + C1*z^1 + ... + C5*z^5) * then * cos__C(z) = z*z*(C0 + C1*z^1 + ... + C5*z^5) * * The coefficient C's are obtained by a special Remez algorithm. * * Accuracy: * In the absence of rounding error, the approximation has absolute error * less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE. * * * Constants: * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. * */ #ifdef VAX /*C0 = 4.1666666666666504759E-2 , Hex 2^ -4 * .AAAAAAAAAAA9F0 */ /*C1 = -1.3888888888865302059E-3 , Hex 2^ -9 * -.B60B60B60A0CCA */ /*C2 = 2.4801587285601038265E-5 , Hex 2^-15 * .D00D00CDCD098F */ /*C3 = -2.7557313470902390219E-7 , Hex 2^-21 * -.93F27BB593E805 */ /*C4 = 2.0875623401082232009E-9 , Hex 2^-28 * .8F74C8FA1E3FF0 */ /*C5 = -1.1355178117642986178E-11 ; Hex 2^-36 * -.C7C32D0A5C5A63 */ static long C0x[] = { 0xaaaa3e2a, 0xa9f0aaaa}; #define C0 (*(double*)C0x) static long C1x[] = { 0x0b60bbb6, 0x0ccab60a}; #define C1 (*(double*)C1x) static long C2x[] = { 0x0d0038d0, 0x098fcdcd}; #define C2 (*(double*)C2x) static long C3x[] = { 0xf27bb593, 0xe805b593}; #define C3 (*(double*)C3x) static long C4x[] = { 0x74c8320f, 0x3ff0fa1e}; #define C4 (*(double*)C4x) static long C5x[] = { 0xc32dae47, 0x5a630a5c}; #define C5 (*(double*)C5x) #else /* IEEE double */ static double C0 = 4.1666666666666504759E-2 , /*Hex 2^ -5 * 1.555555555553E */ C1 = -1.3888888888865301516E-3 , /*Hex 2^-10 * -1.6C16C16C14199 */ C2 = 2.4801587269650015769E-5 , /*Hex 2^-16 * 1.A01A01971CAEB */ C3 = -2.7557304623183959811E-7 , /*Hex 2^-22 * -1.27E4F1314AD1A */ C4 = 2.0873958177697780076E-9 , /*Hex 2^-29 * 1.1EE3B60DDDC8C */ C5 = -1.1250289076471311557E-11 ; /*Hex 2^-37 * -1.8BD5986B2A52E */ #endif static double cos__C(z) double z; { return(z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5)))))); }