1: #
   2: # Copyright (c) 1985 Regents of the University of California.
   3: #
   4: # Use and reproduction of this software are granted  in  accordance  with
   5: # the terms and conditions specified in  the  Berkeley  Software  License
   6: # Agreement (in particular, this entails acknowledgement of the programs'
   7: # source, and inclusion of this notice) with the additional understanding
   8: # that  all  recipients  should regard themselves as participants  in  an
   9: # ongoing  research  project and hence should  feel  obligated  to report
  10: # their  experiences (good or bad) with these elementary function  codes,
  11: # using "sendbug 4bsd-bugs@BERKELEY", to the authors.
  12: #
  13: 
  14: # @(#)argred.s	1.1 (Berkeley) 8/21/85
  15: 
  16: #  libm$argred implements Bob Corbett's argument reduction and
  17: #  libm$sincos implements Peter Tang's double precision sin/cos.
  18: #
  19: #  Note: The two entry points libm$argred and libm$sincos are meant
  20: #        to be used only by _sin, _cos and _tan.
  21: #
  22: # method: true range reduction to [-pi/4,pi/4], P. Tang  &  B. Corbett
  23: # S. McDonald, April 4,  1985
  24: #
  25:         .globl  libm$argred
  26:         .globl  libm$sincos
  27:         .text
  28:         .align  1
  29: 
  30: libm$argred:
  31: #
  32: #  Compare the argument with the largest possible that can
  33: #  be reduced by table lookup.  r3 := |x|  will be used in  table_lookup .
  34: #
  35:         movd    r0,r3
  36:         bgeq    abs1
  37:         mnegd   r3,r3
  38: abs1:
  39:         cmpd    r3,$0d+4.55530934770520019583e+01
  40:         blss    small_arg
  41:         jsb     trigred
  42:         rsb
  43: small_arg:
  44:         jsb     table_lookup
  45:         rsb
  46: #
  47: #  At this point,
  48: #	   r0  contains the quadrant number, 0, 1, 2, or 3;
  49: #	r2/r1  contains the reduced argument as a D-format number;
  50: #  	   r3  contains a F-format extension to the reduced argument;
  51: #          r4  contains a  0 or 1  corresponding to a  sin or cos  entry.
  52: #
  53: libm$sincos:
  54: #
  55: #  Compensate for a cosine entry by adding one to the quadrant number.
  56: #
  57:         addl2   r4,r0
  58: #
  59: #  Polyd clobbers  r5-r0 ;  save  X  in  r7/r6 .
  60: #  This can be avoided by rewriting  trigred .
  61: #
  62:         movd    r1,r6
  63: #
  64: #  Likewise, save  alpha  in  r8 .
  65: #  This can be avoided by rewriting  trigred .
  66: #
  67:         movf    r3,r8
  68: #
  69: #  Odd or even quadrant?  cosine if odd, sine otherwise.
  70: #  Save  floor(quadrant/2) in  r9  ; it determines the final sign.
  71: #
  72:         rotl    $-1,r0,r9
  73:         blss    cosine
  74: sine:
  75:         muld2   r1,r1           # Xsq = X * X
  76:         polyd   r1,$7,sin_coef  # Q = P(Xsq) , of deg 7
  77:         mulf3   $0f3.0,r8,r4    # beta = 3 * alpha
  78:         mulf2   r0,r4           # beta = Q * beta
  79:         addf2   r8,r4           # beta = alpha + beta
  80:         muld2   r6,r0           # S(X) = X * Q
  81: #	cvtfd r4,r4           ... r5 = 0 after a polyd.
  82:         addd2   r4,r0           # S(X) = beta + S(X)
  83:         addd2   r6,r0           # S(X) = X + S(X)
  84:         brb     done
  85: cosine:
  86:         muld2   r6,r6           # Xsq = X * X
  87:         beql    zero_arg
  88:         mulf2   r1,r8           # beta = X * alpha
  89:         polyd   r6,$7,cos_coef  # Q = P'(Xsq) , of deg 7
  90:         subd3   r0,r8,r0        # beta = beta - Q
  91:         subw2   $0x80,r6        # Xsq = Xsq / 2
  92:         addd2   r0,r6           # Xsq = Xsq + beta
  93: zero_arg:
  94:         subd3   r6,$0d1.0,r0    # C(X) = 1 - Xsq
  95: done:
  96:         blbc    r9,even
  97:         mnegd   r0,r0
  98: even:
  99:         rsb
 100: 
 101: .data
 102: .align  2
 103: 
 104: sin_coef:
 105:         .double 0d-7.53080332264191085773e-13   # s7 = 2^-29 -1.a7f2504ffc49f8..
 106:         .double 0d+1.60573519267703489121e-10   # s6 = 2^-21  1.611adaede473c8..
 107:         .double 0d-2.50520965150706067211e-08   # s5 = 2^-1a -1.ae644921ed8382..
 108:         .double 0d+2.75573191800593885716e-06   # s4 = 2^-13  1.71de3a4b884278..
 109:         .double 0d-1.98412698411850507950e-04   # s3 = 2^-0d -1.a01a01a0125e7d..
 110:         .double 0d+8.33333333333325688985e-03   # s2 = 2^-07  1.11111111110e50
 111:         .double 0d-1.66666666666666664354e-01   # s1 = 2^-03 -1.55555555555554
 112:         .double 0d+0.00000000000000000000e+00   # s0 = 0
 113: 
 114: cos_coef:
 115:         .double 0d-1.13006966202629430300e-11   # s7 = 2^-25 -1.8D9BA04D1374BE..
 116:         .double 0d+2.08746646574796004700e-09   # s6 = 2^-1D  1.1EE632650350BA..
 117:         .double 0d-2.75573073031284417300e-07   # s5 = 2^-16 -1.27E4F31411719E..
 118:         .double 0d+2.48015872682668025200e-05   # s4 = 2^-10  1.A01A0196B902E8..
 119:         .double 0d-1.38888888888464709200e-03   # s3 = 2^-0A -1.6C16C16C11FACE..
 120:         .double 0d+4.16666666666664761400e-02   # s2 = 2^-05  1.5555555555539E
 121:         .double 0d+0.00000000000000000000e+00   # s1 = 0
 122:         .double 0d+0.00000000000000000000e+00   # s0 = 0
 123: 
 124: #
 125: #  Multiples of  pi/2  expressed as the sum of three doubles,
 126: #
 127: #  trailing:    n * pi/2 ,  n = 0, 1, 2, ..., 29
 128: #			trailing[n] ,
 129: #
 130: #  middle:      n * pi/2 ,  n = 0, 1, 2, ..., 29
 131: #			middle[n]   ,
 132: #
 133: #  leading:     n * pi/2 ,  n = 0, 1, 2, ..., 29
 134: #			leading[n]  ,
 135: #
 136: #	where
 137: #		leading[n]  := (n * pi/2)  rounded,
 138: #		middle[n]   := (n * pi/2  -  leading[n])  rounded,
 139: #		trailing[n] := (( n * pi/2 - leading[n]) - middle[n])  rounded .
 140: 
 141: trailing:
 142:         .double 0d+0.00000000000000000000e+00   #  0 * pi/2  trailing
 143:         .double 0d+4.33590506506189049611e-35   #  1 * pi/2  trailing
 144:         .double 0d+8.67181013012378099223e-35   #  2 * pi/2  trailing
 145:         .double 0d+1.30077151951856714215e-34   #  3 * pi/2  trailing
 146:         .double 0d+1.73436202602475619845e-34   #  4 * pi/2  trailing
 147:         .double 0d-1.68390735624352669192e-34   #  5 * pi/2  trailing
 148:         .double 0d+2.60154303903713428430e-34   #  6 * pi/2  trailing
 149:         .double 0d-8.16726343231148352150e-35   #  7 * pi/2  trailing
 150:         .double 0d+3.46872405204951239689e-34   #  8 * pi/2  trailing
 151:         .double 0d+3.90231455855570147991e-34   #  9 * pi/2  trailing
 152:         .double 0d-3.36781471248705338384e-34   # 10 * pi/2  trailing
 153:         .double 0d-1.06379439835298071785e-33   # 11 * pi/2  trailing
 154:         .double 0d+5.20308607807426856861e-34   # 12 * pi/2  trailing
 155:         .double 0d+5.63667658458045770509e-34   # 13 * pi/2  trailing
 156:         .double 0d-1.63345268646229670430e-34   # 14 * pi/2  trailing
 157:         .double 0d-1.19986217995610764801e-34   # 15 * pi/2  trailing
 158:         .double 0d+6.93744810409902479378e-34   # 16 * pi/2  trailing
 159:         .double 0d-8.03640094449267300110e-34   # 17 * pi/2  trailing
 160:         .double 0d+7.80462911711140295982e-34   # 18 * pi/2  trailing
 161:         .double 0d-7.16921993148029483506e-34   # 19 * pi/2  trailing
 162:         .double 0d-6.73562942497410676769e-34   # 20 * pi/2  trailing
 163:         .double 0d-6.30203891846791677593e-34   # 21 * pi/2  trailing
 164:         .double 0d-2.12758879670596143570e-33   # 22 * pi/2  trailing
 165:         .double 0d+2.53800212047402350390e-33   # 23 * pi/2  trailing
 166:         .double 0d+1.04061721561485371372e-33   # 24 * pi/2  trailing
 167:         .double 0d+6.11729905311472319056e-32   # 25 * pi/2  trailing
 168:         .double 0d+1.12733531691609154102e-33   # 26 * pi/2  trailing
 169:         .double 0d-3.70049587943078297272e-34   # 27 * pi/2  trailing
 170:         .double 0d-3.26690537292459340860e-34   # 28 * pi/2  trailing
 171:         .double 0d-1.14812616507957271361e-34   # 29 * pi/2  trailing
 172: 
 173: middle:
 174:         .double 0d+0.00000000000000000000e+00   #  0 * pi/2  middle
 175:         .double 0d+5.72118872610983179676e-18   #  1 * pi/2  middle
 176:         .double 0d+1.14423774522196635935e-17   #  2 * pi/2  middle
 177:         .double 0d-3.83475850529283316309e-17   #  3 * pi/2  middle
 178:         .double 0d+2.28847549044393271871e-17   #  4 * pi/2  middle
 179:         .double 0d-2.69052076007086676522e-17   #  5 * pi/2  middle
 180:         .double 0d-7.66951701058566632618e-17   #  6 * pi/2  middle
 181:         .double 0d-1.54628301484890040587e-17   #  7 * pi/2  middle
 182:         .double 0d+4.57695098088786543741e-17   #  8 * pi/2  middle
 183:         .double 0d+1.07001849766246313192e-16   #  9 * pi/2  middle
 184:         .double 0d-5.38104152014173353044e-17   # 10 * pi/2  middle
 185:         .double 0d-2.14622680169080983801e-16   # 11 * pi/2  middle
 186:         .double 0d-1.53390340211713326524e-16   # 12 * pi/2  middle
 187:         .double 0d-9.21580002543456677056e-17   # 13 * pi/2  middle
 188:         .double 0d-3.09256602969780081173e-17   # 14 * pi/2  middle
 189:         .double 0d+3.03066796603896507006e-17   # 15 * pi/2  middle
 190:         .double 0d+9.15390196177573087482e-17   # 16 * pi/2  middle
 191:         .double 0d+1.52771359575124969107e-16   # 17 * pi/2  middle
 192:         .double 0d+2.14003699532492626384e-16   # 18 * pi/2  middle
 193:         .double 0d-1.68853170360202329427e-16   # 19 * pi/2  middle
 194:         .double 0d-1.07620830402834670609e-16   # 20 * pi/2  middle
 195:         .double 0d+3.97700719404595604379e-16   # 21 * pi/2  middle
 196:         .double 0d-4.29245360338161967602e-16   # 22 * pi/2  middle
 197:         .double 0d-3.68013020380794313406e-16   # 23 * pi/2  middle
 198:         .double 0d-3.06780680423426653047e-16   # 24 * pi/2  middle
 199:         .double 0d-2.45548340466059054318e-16   # 25 * pi/2  middle
 200:         .double 0d-1.84316000508691335411e-16   # 26 * pi/2  middle
 201:         .double 0d-1.23083660551323675053e-16   # 27 * pi/2  middle
 202:         .double 0d-6.18513205939560162346e-17   # 28 * pi/2  middle
 203:         .double 0d-6.18980636588357585202e-19   # 29 * pi/2  middle
 204: 
 205: leading:
 206:         .double 0d+0.00000000000000000000e+00   #  0 * pi/2  leading
 207:         .double 0d+1.57079632679489661351e+00   #  1 * pi/2  leading
 208:         .double 0d+3.14159265358979322702e+00   #  2 * pi/2  leading
 209:         .double 0d+4.71238898038468989604e+00   #  3 * pi/2  leading
 210:         .double 0d+6.28318530717958645404e+00   #  4 * pi/2  leading
 211:         .double 0d+7.85398163397448312306e+00   #  5 * pi/2  leading
 212:         .double 0d+9.42477796076937979208e+00   #  6 * pi/2  leading
 213:         .double 0d+1.09955742875642763501e+01   #  7 * pi/2  leading
 214:         .double 0d+1.25663706143591729081e+01   #  8 * pi/2  leading
 215:         .double 0d+1.41371669411540694661e+01   #  9 * pi/2  leading
 216:         .double 0d+1.57079632679489662461e+01   # 10 * pi/2  leading
 217:         .double 0d+1.72787595947438630262e+01   # 11 * pi/2  leading
 218:         .double 0d+1.88495559215387595842e+01   # 12 * pi/2  leading
 219:         .double 0d+2.04203522483336561422e+01   # 13 * pi/2  leading
 220:         .double 0d+2.19911485751285527002e+01   # 14 * pi/2  leading
 221:         .double 0d+2.35619449019234492582e+01   # 15 * pi/2  leading
 222:         .double 0d+2.51327412287183458162e+01   # 16 * pi/2  leading
 223:         .double 0d+2.67035375555132423742e+01   # 17 * pi/2  leading
 224:         .double 0d+2.82743338823081389322e+01   # 18 * pi/2  leading
 225:         .double 0d+2.98451302091030359342e+01   # 19 * pi/2  leading
 226:         .double 0d+3.14159265358979324922e+01   # 20 * pi/2  leading
 227:         .double 0d+3.29867228626928286062e+01   # 21 * pi/2  leading
 228:         .double 0d+3.45575191894877260523e+01   # 22 * pi/2  leading
 229:         .double 0d+3.61283155162826226103e+01   # 23 * pi/2  leading
 230:         .double 0d+3.76991118430775191683e+01   # 24 * pi/2  leading
 231:         .double 0d+3.92699081698724157263e+01   # 25 * pi/2  leading
 232:         .double 0d+4.08407044966673122843e+01   # 26 * pi/2  leading
 233:         .double 0d+4.24115008234622088423e+01   # 27 * pi/2  leading
 234:         .double 0d+4.39822971502571054003e+01   # 28 * pi/2  leading
 235:         .double 0d+4.55530934770520019583e+01   # 29 * pi/2  leading
 236: 
 237: twoOverPi:
 238:         .double 0d+6.36619772367581343076e-01
 239:         .text
 240:         .align  1
 241: 
 242: table_lookup:
 243:         muld3   r3,twoOverPi,r0
 244:         cvtrdl  r0,r0                   # n = nearest int to ((2/pi)*|x|) rnded
 245:         mull3   $8,r0,r5
 246:         subd2   leading(r5),r3          # p = (|x| - leading n*pi/2) exactly
 247:         subd3   middle(r5),r3,r1        # q = (p - middle  n*pi/2) rounded
 248:         subd2   r1,r3                   # r = (p - q)
 249:         subd2   middle(r5),r3           # r =  r - middle  n*pi/2
 250:         subd2   trailing(r5),r3         # r =  r - trailing n*pi/2  rounded
 251: #
 252: #  If the original argument was negative,
 253: #  negate the reduce argument and
 254: #  adjust the octant/quadrant number.
 255: #
 256:         tstw    4(ap)
 257:         bgeq    abs2
 258:         mnegf   r1,r1
 259:         mnegf   r3,r3
 260: #	subb3 r0,$8,r0        ...used for  pi/4  reduction -S.McD
 261:         subb3   r0,$4,r0
 262: abs2:
 263: #
 264: #  Clear all unneeded octant/quadrant bits.
 265: #
 266: #	bicb2 $0xf8,r0        ...used for  pi/4  reduction -S.McD
 267:         bicb2   $0xfc,r0
 268:         rsb
 269: #
 270: #						p.0
 271:         .text
 272:         .align  2
 273: #
 274: # Only 256 (actually 225) bits of 2/pi are needed for VAX double
 275: # precision; this was determined by enumerating all the nearest
 276: # machine integer multiples of pi/2 using continued fractions.
 277: # (8a8d3673775b7ff7 required the most bits.)            -S.McD
 278: #
 279:         .long   0
 280:         .long   0
 281:         .long   0xaef1586d
 282:         .long   0x9458eaf7
 283:         .long   0x10e4107f
 284:         .long   0xd8a5664f
 285:         .long   0x4d377036
 286:         .long   0x09d5f47d
 287:         .long   0x91054a7f
 288:         .long   0xbe60db93
 289: bits2opi:
 290:         .long   0x00000028
 291:         .long   0
 292: #
 293: #  Note: wherever you see the word `octant', read `quadrant'.
 294: #  Currently this code is set up for  pi/2  argument reduction.
 295: #  By uncommenting/commenting the appropriate lines, it will
 296: #  also serve as a  pi/4  argument reduction code.
 297: #
 298: 
 299: #						p.1
 300: #  Trigred  preforms argument reduction
 301: #  for the trigonometric functions.  It
 302: #  takes one input argument, a D-format
 303: #  number in  r1/r0 .  The magnitude of
 304: #  the input argument must be greater
 305: #  than or equal to  1/2 .  Trigred produces
 306: #  three results:  the number of the octant
 307: #  occupied by the argument, the reduced
 308: #  argument, and an extension of the
 309: #  reduced argument.  The octant number is
 310: #  returned in  r0 .  The reduced argument
 311: #  is returned as a D-format number in
 312: #  r2/r1 .  An 8 bit extension of the
 313: #  reduced argument is returned as an
 314: #  F-format number in r3.
 315: #						p.2
 316: trigred:
 317: #
 318: #  Save the sign of the input argument.
 319: #
 320:         movw    r0,-(sp)
 321: #
 322: #  Extract the exponent field.
 323: #
 324:         extzv   $7,$7,r0,r2
 325: #
 326: #  Convert the fraction part of the input
 327: #  argument into a quadword integer.
 328: #
 329:         bicw2   $0xff80,r0
 330:         bisb2   $0x80,r0        # -S.McD
 331:         rotl    $16,r0,r0
 332:         rotl    $16,r1,r1
 333: #
 334: #  If  r1  is negative, add  1  to  r0 .  This
 335: #  adjustment is made so that the two's
 336: #  complement multiplications done later
 337: #  will produce unsigned results.
 338: #
 339:         bgeq    posmid
 340:         incl    r0
 341: posmid:
 342: #						p.3
 343: #
 344: #  Set  r3  to the address of the first quadword
 345: #  used to obtain the needed portion of  2/pi .
 346: #  The address is longword aligned to ensure
 347: #  efficient access.
 348: #
 349:         ashl    $-3,r2,r3
 350:         bicb2   $3,r3
 351:         subl3   r3,$bits2opi,r3
 352: #
 353: #  Set  r2  to the size of the shift needed to
 354: #  obtain the correct portion of  2/pi .
 355: #
 356:         bicb2   $0xe0,r2
 357: #						p.4
 358: #
 359: #  Move the needed  128  bits of  2/pi  into
 360: #  r11 - r8 .  Adjust the numbers to allow
 361: #  for unsigned multiplication.
 362: #
 363:         ashq    r2,(r3),r10
 364: 
 365:         subl2   $4,r3
 366:         ashq    r2,(r3),r9
 367:         bgeq    signoff1
 368:         incl    r11
 369: signoff1:
 370:         subl2   $4,r3
 371:         ashq    r2,(r3),r8
 372:         bgeq    signoff2
 373:         incl    r10
 374: signoff2:
 375:         subl2   $4,r3
 376:         ashq    r2,(r3),r7
 377:         bgeq    signoff3
 378:         incl    r9
 379: signoff3:
 380: #						p.5
 381: #
 382: #  Multiply the contents of  r0/r1  by the
 383: #  slice of  2/pi  in  r11 - r8 .
 384: #
 385:         emul    r0,r8,$0,r4
 386:         emul    r0,r9,r5,r5
 387:         emul    r0,r10,r6,r6
 388: 
 389:         emul    r1,r8,$0,r7
 390:         emul    r1,r9,r8,r8
 391:         emul    r1,r10,r9,r9
 392:         emul    r1,r11,r10,r10
 393: 
 394:         addl2   r4,r8
 395:         adwc    r5,r9
 396:         adwc    r6,r10
 397: #						p.6
 398: #
 399: #  If there are more than five leading zeros
 400: #  after the first two quotient bits or if there
 401: #  are more than five leading ones after the first
 402: #  two quotient bits, generate more fraction bits.
 403: #  Otherwise, branch to code to produce the result.
 404: #
 405:         bicl3   $0xc1ffffff,r10,r4
 406:         beql    more1
 407:         cmpl    $0x3e000000,r4
 408:         bneq    result
 409: more1:
 410: #						p.7
 411: #
 412: #  generate another  32  result bits.
 413: #
 414:         subl2   $4,r3
 415:         ashq    r2,(r3),r5
 416:         bgeq    signoff4
 417: 
 418:         emul    r1,r6,$0,r4
 419:         addl2   r1,r5
 420:         emul    r0,r6,r5,r5
 421:         addl2   r0,r6
 422:         brb     addbits1
 423: 
 424: signoff4:
 425:         emul    r1,r6,$0,r4
 426:         emul    r0,r6,r5,r5
 427: 
 428: addbits1:
 429:         addl2   r5,r7
 430:         adwc    r6,r8
 431:         adwc    $0,r9
 432:         adwc    $0,r10
 433: #						p.8
 434: #
 435: #  Check for massive cancellation.
 436: #
 437:         bicl3   $0xc0000000,r10,r6
 438: #	bneq  more2                   -S.McD  Test was backwards
 439:         beql    more2
 440:         cmpl    $0x3fffffff,r6
 441:         bneq    result
 442: more2:
 443: #						p.9
 444: #
 445: #  If massive cancellation has occurred,
 446: #  generate another  24  result bits.
 447: #  Testing has shown there will always be
 448: #  enough bits after this point.
 449: #
 450:         subl2   $4,r3
 451:         ashq    r2,(r3),r5
 452:         bgeq    signoff5
 453: 
 454:         emul    r0,r6,r4,r5
 455:         addl2   r0,r6
 456:         brb     addbits2
 457: 
 458: signoff5:
 459:         emul    r0,r6,r4,r5
 460: 
 461: addbits2:
 462:         addl2   r6,r7
 463:         adwc    $0,r8
 464:         adwc    $0,r9
 465:         adwc    $0,r10
 466: #						p.10
 467: #
 468: #  The following code produces the reduced
 469: #  argument from the product bits contained
 470: #  in  r10 - r7 .
 471: #
 472: result:
 473: #
 474: #  Extract the octant number from  r10 .
 475: #
 476: #	extzv $29,$3,r10,r0   ...used for  pi/4  reduction -S.McD
 477:         extzv   $30,$2,r10,r0
 478: #
 479: #  Clear the octant bits in  r10 .
 480: #
 481: #	bicl2 $0xe0000000,r10 ...used for  pi/4  reduction -S.McD
 482:         bicl2   $0xc0000000,r10
 483: #
 484: #  Zero the sign flag.
 485: #
 486:         clrl    r5
 487: #						p.11
 488: #
 489: #  Check to see if the fraction is greater than
 490: #  or equal to one-half.  If it is, add one
 491: #  to the octant number, set the sign flag
 492: #  on, and replace the fraction with  1 minus
 493: #  the fraction.
 494: #
 495: #	bitl  $0x10000000,r10         ...used for  pi/4  reduction -S.McD
 496:         bitl    $0x20000000,r10
 497:         beql    small
 498:         incl    r0
 499:         incl    r5
 500: #	subl3 r10,$0x1fffffff,r10     ...used for  pi/4  reduction -S.McD
 501:         subl3   r10,$0x3fffffff,r10
 502:         mcoml   r9,r9
 503:         mcoml   r8,r8
 504:         mcoml   r7,r7
 505: small:
 506: #						p.12
 507: #
 508: ##  Test whether the first  29  bits of the ...used for  pi/4  reduction -S.McD
 509: #  Test whether the first  30  bits of the
 510: #  fraction are zero.
 511: #
 512:         tstl    r10
 513:         beql    tiny
 514: #
 515: #  Find the position of the first one bit in  r10 .
 516: #
 517:         cvtld   r10,r1
 518:         extzv   $7,$7,r1,r1
 519: #
 520: #  Compute the size of the shift needed.
 521: #
 522:         subl3   r1,$32,r6
 523: #
 524: #  Shift up the high order  64  bits of the
 525: #  product.
 526: #
 527:         ashq    r6,r9,r10
 528:         ashq    r6,r8,r9
 529:         brb     mult
 530: #						p.13
 531: #
 532: #  Test to see if the sign bit of  r9  is on.
 533: #
 534: tiny:
 535:         tstl    r9
 536:         bgeq    tinier
 537: #
 538: #  If it is, shift the product bits up  32  bits.
 539: #
 540:         movl    $32,r6
 541:         movq    r8,r10
 542:         tstl    r10
 543:         brb     mult
 544: #						p.14
 545: #
 546: #  Test whether  r9  is zero.  It is probably
 547: #  impossible for both  r10  and  r9  to be
 548: #  zero, but until proven to be so, the test
 549: #  must be made.
 550: #
 551: tinier:
 552:         beql    zero
 553: #
 554: #  Find the position of the first one bit in  r9 .
 555: #
 556:         cvtld   r9,r1
 557:         extzv   $7,$7,r1,r1
 558: #
 559: #  Compute the size of the shift needed.
 560: #
 561:         subl3   r1,$32,r1
 562:         addl3   $32,r1,r6
 563: #
 564: #  Shift up the high order  64  bits of the
 565: #  product.
 566: #
 567:         ashq    r1,r8,r10
 568:         ashq    r1,r7,r9
 569:         brb     mult
 570: #						p.15
 571: #
 572: #  The following code sets the reduced
 573: #  argument to zero.
 574: #
 575: zero:
 576:         clrl    r1
 577:         clrl    r2
 578:         clrl    r3
 579:         brw     return
 580: #						p.16
 581: #
 582: #  At this point,  r0  contains the octant number,
 583: #  r6  indicates the number of bits the fraction
 584: #  has been shifted,  r5  indicates the sign of
 585: #  the fraction,  r11/r10  contain the high order
 586: #  64  bits of the fraction, and the condition
 587: #  codes indicate where the sign bit of  r10
 588: #  is on.  The following code multiplies the
 589: #  fraction by  pi/2 .
 590: #
 591: mult:
 592: #
 593: #  Save  r11/r10  in  r4/r1 .		-S.McD
 594:         movl    r11,r4
 595:         movl    r10,r1
 596: #
 597: #  If the sign bit of  r10  is on, add  1  to  r11 .
 598: #
 599:         bgeq    signoff6
 600:         incl    r11
 601: signoff6:
 602: #						p.17
 603: #
 604: #  Move  pi/2  into  r3/r2 .
 605: #
 606:         movq    $0xc90fdaa22168c235,r2
 607: #
 608: #  Multiply the fraction by the portion of  pi/2
 609: #  in  r2 .
 610: #
 611:         emul    r2,r10,$0,r7
 612:         emul    r2,r11,r8,r7
 613: #
 614: #  Multiply the fraction by the portion of  pi/2
 615: #  in  r3 .
 616:         emul    r3,r10,$0,r9
 617:         emul    r3,r11,r10,r10
 618: #
 619: #  Add the product bits together.
 620: #
 621:         addl2   r7,r9
 622:         adwc    r8,r10
 623:         adwc    $0,r11
 624: #
 625: #  Compensate for not sign extending  r8  above.-S.McD
 626: #
 627:         tstl    r8
 628:         bgeq    signoff6a
 629:         decl    r11
 630: signoff6a:
 631: #
 632: #  Compensate for  r11/r10  being unsigned.	-S.McD
 633: #
 634:         addl2   r2,r10
 635:         adwc    r3,r11
 636: #
 637: #  Compensate for  r3/r2  being unsigned.	-S.McD
 638: #
 639:         addl2   r1,r10
 640:         adwc    r4,r11
 641: #						p.18
 642: #
 643: #  If the sign bit of  r11  is zero, shift the
 644: #  product bits up one bit and increment  r6 .
 645: #
 646:         blss    signon
 647:         incl    r6
 648:         ashq    $1,r10,r10
 649:         tstl    r9
 650:         bgeq    signoff7
 651:         incl    r10
 652: signoff7:
 653: signon:
 654: #						p.19
 655: #
 656: #  Shift the  56  most significant product
 657: #  bits into  r9/r8 .  The sign extension
 658: #  will be handled later.
 659: #
 660:         ashq    $-8,r10,r8
 661: #
 662: #  Convert the low order  8  bits of  r10
 663: #  into an F-format number.
 664: #
 665:         cvtbf   r10,r3
 666: #
 667: #  If the result of the conversion was
 668: #  negative, add  1  to  r9/r8 .
 669: #
 670:         bgeq    chop
 671:         incl    r8
 672:         adwc    $0,r9
 673: #
 674: #  If  r9  is now zero, branch to special
 675: #  code to handle that possibility.
 676: #
 677:         beql    carryout
 678: chop:
 679: #						p.20
 680: #
 681: #  Convert the number in  r9/r8  into
 682: #  D-format number in  r2/r1 .
 683: #
 684:         rotl    $16,r8,r2
 685:         rotl    $16,r9,r1
 686: #
 687: #  Set the exponent field to the appropriate
 688: #  value.  Note that the extra bits created by
 689: #  sign extension are now eliminated.
 690: #
 691:         subw3   r6,$131,r6
 692:         insv    r6,$7,$9,r1
 693: #
 694: #  Set the exponent field of the F-format
 695: #  number in  r3  to the appropriate value.
 696: #
 697:         tstf    r3
 698:         beql    return
 699: #	extzv $7,$8,r3,r4     -S.McD
 700:         extzv   $7,$7,r3,r4
 701:         addw2   r4,r6
 702: #	subw2 $217,r6         -S.McD
 703:         subw2   $64,r6
 704:         insv    r6,$7,$8,r3
 705:         brb     return
 706: #						p.21
 707: #
 708: #  The following code generates the appropriate
 709: #  result for the unlikely possibility that
 710: #  rounding the number in  r9/r8  resulted in
 711: #  a carry out.
 712: #
 713: carryout:
 714:         clrl    r1
 715:         clrl    r2
 716:         subw3   r6,$132,r6
 717:         insv    r6,$7,$9,r1
 718:         tstf    r3
 719:         beql    return
 720:         extzv   $7,$8,r3,r4
 721:         addw2   r4,r6
 722:         subw2   $218,r6
 723:         insv    r6,$7,$8,r3
 724: #						p.22
 725: #
 726: #  The following code makes an needed
 727: #  adjustments to the signs of the
 728: #  results or to the octant number, and
 729: #  then returns.
 730: #
 731: return:
 732: #
 733: #  Test if the fraction was greater than or
 734: #  equal to  1/2 .  If so, negate the reduced
 735: #  argument.
 736: #
 737:         blbc    r5,signoff8
 738:         mnegf   r1,r1
 739:         mnegf   r3,r3
 740: signoff8:
 741: #						p.23
 742: #
 743: #  If the original argument was negative,
 744: #  negate the reduce argument and
 745: #  adjust the octant number.
 746: #
 747:         tstw    (sp)+
 748:         bgeq    signoff9
 749:         mnegf   r1,r1
 750:         mnegf   r3,r3
 751: #	subb3 r0,$8,r0        ...used for  pi/4  reduction -S.McD
 752:         subb3   r0,$4,r0
 753: signoff9:
 754: #
 755: #  Clear all unneeded octant bits.
 756: #
 757: #	bicb2 $0xf8,r0        ...used for  pi/4  reduction -S.McD
 758:         bicb2   $0xfc,r0
 759: #
 760: #  Return.
 761: #
 762:         rsb

Defined functions

abs1 defined in line 38; used 1 times
  • in line 36
abs2 defined in line 262; used 1 times
addbits1 defined in line 428; used 1 times
addbits2 defined in line 461; used 1 times
bits2opi defined in line 289; used 1 times
carryout defined in line 713; used 1 times
chop defined in line 678; used 1 times
cosine defined in line 85; used 1 times
  • in line 73
done defined in line 95; used 1 times
  • in line 84
even defined in line 98; used 1 times
  • in line 96
libm$argred declared in line 25; defined in line 30; used 4 times
libm$sincos declared in line 26; defined in line 53; used 5 times
more1 defined in line 409; used 1 times
more2 defined in line 442; used 1 times
mult defined in line 591; used 3 times
posmid defined in line 341; used 1 times
result defined in line 472; used 2 times
return defined in line 731; used 4 times
signoff1 defined in line 369; used 1 times
signoff2 defined in line 374; used 1 times
signoff3 defined in line 379; used 1 times
signoff4 defined in line 424; used 1 times
signoff5 defined in line 458; used 1 times
signoff6 defined in line 601; used 1 times
signoff6a defined in line 630; used 1 times
signoff7 defined in line 652; used 1 times
signoff8 defined in line 740; used 1 times
signoff9 defined in line 753; used 1 times
signon defined in line 653; used 1 times
sine defined in line 74; never used
small defined in line 505; used 1 times
small_arg defined in line 43; used 1 times
  • in line 40
table_lookup defined in line 242; used 1 times
  • in line 44
tinier defined in line 551; used 1 times
tiny defined in line 534; used 1 times
trigred defined in line 316; used 1 times
  • in line 41
zero defined in line 575; used 1 times
zero_arg defined in line 93; used 1 times
  • in line 87

Defined variables

cos_coef defined in line 114; used 1 times
  • in line 89
leading defined in line 205; used 1 times
middle defined in line 173; used 2 times
sin_coef defined in line 104; used 1 times
  • in line 76
trailing defined in line 141; used 1 times
twoOverPi defined in line 237; used 1 times
Last modified: 1985-08-21
Generated: 2016-12-26
Generated by src2html V0.67
page hit count: 1113
Valid CSS Valid XHTML 1.0 Strict