1: # 2: # Copyright (c) 1985 Regents of the University of California. 3: # 4: # Use and reproduction of this software are granted in accordance with 5: # the terms and conditions specified in the Berkeley Software License 6: # Agreement (in particular, this entails acknowledgement of the programs' 7: # source, and inclusion of this notice) with the additional understanding 8: # that all recipients should regard themselves as participants in an 9: # ongoing research project and hence should feel obligated to report 10: # their experiences (good or bad) with these elementary function codes, 11: # using "sendbug 4bsd-bugs@BERKELEY", to the authors. 12: # 13: 14: # @(#)argred.s 1.1 (Berkeley) 8/21/85 15: 16: # libm$argred implements Bob Corbett's argument reduction and 17: # libm$sincos implements Peter Tang's double precision sin/cos. 18: # 19: # Note: The two entry points libm$argred and libm$sincos are meant 20: # to be used only by _sin, _cos and _tan. 21: # 22: # method: true range reduction to [-pi/4,pi/4], P. Tang & B. Corbett 23: # S. McDonald, April 4, 1985 24: # 25: .globl libm$argred 26: .globl libm$sincos 27: .text 28: .align 1 29: 30: libm$argred: 31: # 32: # Compare the argument with the largest possible that can 33: # be reduced by table lookup. r3 := |x| will be used in table_lookup . 34: # 35: movd r0,r3 36: bgeq abs1 37: mnegd r3,r3 38: abs1: 39: cmpd r3,$0d+4.55530934770520019583e+01 40: blss small_arg 41: jsb trigred 42: rsb 43: small_arg: 44: jsb table_lookup 45: rsb 46: # 47: # At this point, 48: # r0 contains the quadrant number, 0, 1, 2, or 3; 49: # r2/r1 contains the reduced argument as a D-format number; 50: # r3 contains a F-format extension to the reduced argument; 51: # r4 contains a 0 or 1 corresponding to a sin or cos entry. 52: # 53: libm$sincos: 54: # 55: # Compensate for a cosine entry by adding one to the quadrant number. 56: # 57: addl2 r4,r0 58: # 59: # Polyd clobbers r5-r0 ; save X in r7/r6 . 60: # This can be avoided by rewriting trigred . 61: # 62: movd r1,r6 63: # 64: # Likewise, save alpha in r8 . 65: # This can be avoided by rewriting trigred . 66: # 67: movf r3,r8 68: # 69: # Odd or even quadrant? cosine if odd, sine otherwise. 70: # Save floor(quadrant/2) in r9 ; it determines the final sign. 71: # 72: rotl $-1,r0,r9 73: blss cosine 74: sine: 75: muld2 r1,r1 # Xsq = X * X 76: polyd r1,$7,sin_coef # Q = P(Xsq) , of deg 7 77: mulf3 $0f3.0,r8,r4 # beta = 3 * alpha 78: mulf2 r0,r4 # beta = Q * beta 79: addf2 r8,r4 # beta = alpha + beta 80: muld2 r6,r0 # S(X) = X * Q 81: # cvtfd r4,r4 ... r5 = 0 after a polyd. 82: addd2 r4,r0 # S(X) = beta + S(X) 83: addd2 r6,r0 # S(X) = X + S(X) 84: brb done 85: cosine: 86: muld2 r6,r6 # Xsq = X * X 87: beql zero_arg 88: mulf2 r1,r8 # beta = X * alpha 89: polyd r6,$7,cos_coef # Q = P'(Xsq) , of deg 7 90: subd3 r0,r8,r0 # beta = beta - Q 91: subw2 $0x80,r6 # Xsq = Xsq / 2 92: addd2 r0,r6 # Xsq = Xsq + beta 93: zero_arg: 94: subd3 r6,$0d1.0,r0 # C(X) = 1 - Xsq 95: done: 96: blbc r9,even 97: mnegd r0,r0 98: even: 99: rsb 100: 101: .data 102: .align 2 103: 104: sin_coef: 105: .double 0d-7.53080332264191085773e-13 # s7 = 2^-29 -1.a7f2504ffc49f8.. 106: .double 0d+1.60573519267703489121e-10 # s6 = 2^-21 1.611adaede473c8.. 107: .double 0d-2.50520965150706067211e-08 # s5 = 2^-1a -1.ae644921ed8382.. 108: .double 0d+2.75573191800593885716e-06 # s4 = 2^-13 1.71de3a4b884278.. 109: .double 0d-1.98412698411850507950e-04 # s3 = 2^-0d -1.a01a01a0125e7d.. 110: .double 0d+8.33333333333325688985e-03 # s2 = 2^-07 1.11111111110e50 111: .double 0d-1.66666666666666664354e-01 # s1 = 2^-03 -1.55555555555554 112: .double 0d+0.00000000000000000000e+00 # s0 = 0 113: 114: cos_coef: 115: .double 0d-1.13006966202629430300e-11 # s7 = 2^-25 -1.8D9BA04D1374BE.. 116: .double 0d+2.08746646574796004700e-09 # s6 = 2^-1D 1.1EE632650350BA.. 117: .double 0d-2.75573073031284417300e-07 # s5 = 2^-16 -1.27E4F31411719E.. 118: .double 0d+2.48015872682668025200e-05 # s4 = 2^-10 1.A01A0196B902E8.. 119: .double 0d-1.38888888888464709200e-03 # s3 = 2^-0A -1.6C16C16C11FACE.. 120: .double 0d+4.16666666666664761400e-02 # s2 = 2^-05 1.5555555555539E 121: .double 0d+0.00000000000000000000e+00 # s1 = 0 122: .double 0d+0.00000000000000000000e+00 # s0 = 0 123: 124: # 125: # Multiples of pi/2 expressed as the sum of three doubles, 126: # 127: # trailing: n * pi/2 , n = 0, 1, 2, ..., 29 128: # trailing[n] , 129: # 130: # middle: n * pi/2 , n = 0, 1, 2, ..., 29 131: # middle[n] , 132: # 133: # leading: n * pi/2 , n = 0, 1, 2, ..., 29 134: # leading[n] , 135: # 136: # where 137: # leading[n] := (n * pi/2) rounded, 138: # middle[n] := (n * pi/2 - leading[n]) rounded, 139: # trailing[n] := (( n * pi/2 - leading[n]) - middle[n]) rounded . 140: 141: trailing: 142: .double 0d+0.00000000000000000000e+00 # 0 * pi/2 trailing 143: .double 0d+4.33590506506189049611e-35 # 1 * pi/2 trailing 144: .double 0d+8.67181013012378099223e-35 # 2 * pi/2 trailing 145: .double 0d+1.30077151951856714215e-34 # 3 * pi/2 trailing 146: .double 0d+1.73436202602475619845e-34 # 4 * pi/2 trailing 147: .double 0d-1.68390735624352669192e-34 # 5 * pi/2 trailing 148: .double 0d+2.60154303903713428430e-34 # 6 * pi/2 trailing 149: .double 0d-8.16726343231148352150e-35 # 7 * pi/2 trailing 150: .double 0d+3.46872405204951239689e-34 # 8 * pi/2 trailing 151: .double 0d+3.90231455855570147991e-34 # 9 * pi/2 trailing 152: .double 0d-3.36781471248705338384e-34 # 10 * pi/2 trailing 153: .double 0d-1.06379439835298071785e-33 # 11 * pi/2 trailing 154: .double 0d+5.20308607807426856861e-34 # 12 * pi/2 trailing 155: .double 0d+5.63667658458045770509e-34 # 13 * pi/2 trailing 156: .double 0d-1.63345268646229670430e-34 # 14 * pi/2 trailing 157: .double 0d-1.19986217995610764801e-34 # 15 * pi/2 trailing 158: .double 0d+6.93744810409902479378e-34 # 16 * pi/2 trailing 159: .double 0d-8.03640094449267300110e-34 # 17 * pi/2 trailing 160: .double 0d+7.80462911711140295982e-34 # 18 * pi/2 trailing 161: .double 0d-7.16921993148029483506e-34 # 19 * pi/2 trailing 162: .double 0d-6.73562942497410676769e-34 # 20 * pi/2 trailing 163: .double 0d-6.30203891846791677593e-34 # 21 * pi/2 trailing 164: .double 0d-2.12758879670596143570e-33 # 22 * pi/2 trailing 165: .double 0d+2.53800212047402350390e-33 # 23 * pi/2 trailing 166: .double 0d+1.04061721561485371372e-33 # 24 * pi/2 trailing 167: .double 0d+6.11729905311472319056e-32 # 25 * pi/2 trailing 168: .double 0d+1.12733531691609154102e-33 # 26 * pi/2 trailing 169: .double 0d-3.70049587943078297272e-34 # 27 * pi/2 trailing 170: .double 0d-3.26690537292459340860e-34 # 28 * pi/2 trailing 171: .double 0d-1.14812616507957271361e-34 # 29 * pi/2 trailing 172: 173: middle: 174: .double 0d+0.00000000000000000000e+00 # 0 * pi/2 middle 175: .double 0d+5.72118872610983179676e-18 # 1 * pi/2 middle 176: .double 0d+1.14423774522196635935e-17 # 2 * pi/2 middle 177: .double 0d-3.83475850529283316309e-17 # 3 * pi/2 middle 178: .double 0d+2.28847549044393271871e-17 # 4 * pi/2 middle 179: .double 0d-2.69052076007086676522e-17 # 5 * pi/2 middle 180: .double 0d-7.66951701058566632618e-17 # 6 * pi/2 middle 181: .double 0d-1.54628301484890040587e-17 # 7 * pi/2 middle 182: .double 0d+4.57695098088786543741e-17 # 8 * pi/2 middle 183: .double 0d+1.07001849766246313192e-16 # 9 * pi/2 middle 184: .double 0d-5.38104152014173353044e-17 # 10 * pi/2 middle 185: .double 0d-2.14622680169080983801e-16 # 11 * pi/2 middle 186: .double 0d-1.53390340211713326524e-16 # 12 * pi/2 middle 187: .double 0d-9.21580002543456677056e-17 # 13 * pi/2 middle 188: .double 0d-3.09256602969780081173e-17 # 14 * pi/2 middle 189: .double 0d+3.03066796603896507006e-17 # 15 * pi/2 middle 190: .double 0d+9.15390196177573087482e-17 # 16 * pi/2 middle 191: .double 0d+1.52771359575124969107e-16 # 17 * pi/2 middle 192: .double 0d+2.14003699532492626384e-16 # 18 * pi/2 middle 193: .double 0d-1.68853170360202329427e-16 # 19 * pi/2 middle 194: .double 0d-1.07620830402834670609e-16 # 20 * pi/2 middle 195: .double 0d+3.97700719404595604379e-16 # 21 * pi/2 middle 196: .double 0d-4.29245360338161967602e-16 # 22 * pi/2 middle 197: .double 0d-3.68013020380794313406e-16 # 23 * pi/2 middle 198: .double 0d-3.06780680423426653047e-16 # 24 * pi/2 middle 199: .double 0d-2.45548340466059054318e-16 # 25 * pi/2 middle 200: .double 0d-1.84316000508691335411e-16 # 26 * pi/2 middle 201: .double 0d-1.23083660551323675053e-16 # 27 * pi/2 middle 202: .double 0d-6.18513205939560162346e-17 # 28 * pi/2 middle 203: .double 0d-6.18980636588357585202e-19 # 29 * pi/2 middle 204: 205: leading: 206: .double 0d+0.00000000000000000000e+00 # 0 * pi/2 leading 207: .double 0d+1.57079632679489661351e+00 # 1 * pi/2 leading 208: .double 0d+3.14159265358979322702e+00 # 2 * pi/2 leading 209: .double 0d+4.71238898038468989604e+00 # 3 * pi/2 leading 210: .double 0d+6.28318530717958645404e+00 # 4 * pi/2 leading 211: .double 0d+7.85398163397448312306e+00 # 5 * pi/2 leading 212: .double 0d+9.42477796076937979208e+00 # 6 * pi/2 leading 213: .double 0d+1.09955742875642763501e+01 # 7 * pi/2 leading 214: .double 0d+1.25663706143591729081e+01 # 8 * pi/2 leading 215: .double 0d+1.41371669411540694661e+01 # 9 * pi/2 leading 216: .double 0d+1.57079632679489662461e+01 # 10 * pi/2 leading 217: .double 0d+1.72787595947438630262e+01 # 11 * pi/2 leading 218: .double 0d+1.88495559215387595842e+01 # 12 * pi/2 leading 219: .double 0d+2.04203522483336561422e+01 # 13 * pi/2 leading 220: .double 0d+2.19911485751285527002e+01 # 14 * pi/2 leading 221: .double 0d+2.35619449019234492582e+01 # 15 * pi/2 leading 222: .double 0d+2.51327412287183458162e+01 # 16 * pi/2 leading 223: .double 0d+2.67035375555132423742e+01 # 17 * pi/2 leading 224: .double 0d+2.82743338823081389322e+01 # 18 * pi/2 leading 225: .double 0d+2.98451302091030359342e+01 # 19 * pi/2 leading 226: .double 0d+3.14159265358979324922e+01 # 20 * pi/2 leading 227: .double 0d+3.29867228626928286062e+01 # 21 * pi/2 leading 228: .double 0d+3.45575191894877260523e+01 # 22 * pi/2 leading 229: .double 0d+3.61283155162826226103e+01 # 23 * pi/2 leading 230: .double 0d+3.76991118430775191683e+01 # 24 * pi/2 leading 231: .double 0d+3.92699081698724157263e+01 # 25 * pi/2 leading 232: .double 0d+4.08407044966673122843e+01 # 26 * pi/2 leading 233: .double 0d+4.24115008234622088423e+01 # 27 * pi/2 leading 234: .double 0d+4.39822971502571054003e+01 # 28 * pi/2 leading 235: .double 0d+4.55530934770520019583e+01 # 29 * pi/2 leading 236: 237: twoOverPi: 238: .double 0d+6.36619772367581343076e-01 239: .text 240: .align 1 241: 242: table_lookup: 243: muld3 r3,twoOverPi,r0 244: cvtrdl r0,r0 # n = nearest int to ((2/pi)*|x|) rnded 245: mull3 $8,r0,r5 246: subd2 leading(r5),r3 # p = (|x| - leading n*pi/2) exactly 247: subd3 middle(r5),r3,r1 # q = (p - middle n*pi/2) rounded 248: subd2 r1,r3 # r = (p - q) 249: subd2 middle(r5),r3 # r = r - middle n*pi/2 250: subd2 trailing(r5),r3 # r = r - trailing n*pi/2 rounded 251: # 252: # If the original argument was negative, 253: # negate the reduce argument and 254: # adjust the octant/quadrant number. 255: # 256: tstw 4(ap) 257: bgeq abs2 258: mnegf r1,r1 259: mnegf r3,r3 260: # subb3 r0,$8,r0 ...used for pi/4 reduction -S.McD 261: subb3 r0,$4,r0 262: abs2: 263: # 264: # Clear all unneeded octant/quadrant bits. 265: # 266: # bicb2 $0xf8,r0 ...used for pi/4 reduction -S.McD 267: bicb2 $0xfc,r0 268: rsb 269: # 270: # p.0 271: .text 272: .align 2 273: # 274: # Only 256 (actually 225) bits of 2/pi are needed for VAX double 275: # precision; this was determined by enumerating all the nearest 276: # machine integer multiples of pi/2 using continued fractions. 277: # (8a8d3673775b7ff7 required the most bits.) -S.McD 278: # 279: .long 0 280: .long 0 281: .long 0xaef1586d 282: .long 0x9458eaf7 283: .long 0x10e4107f 284: .long 0xd8a5664f 285: .long 0x4d377036 286: .long 0x09d5f47d 287: .long 0x91054a7f 288: .long 0xbe60db93 289: bits2opi: 290: .long 0x00000028 291: .long 0 292: # 293: # Note: wherever you see the word `octant', read `quadrant'. 294: # Currently this code is set up for pi/2 argument reduction. 295: # By uncommenting/commenting the appropriate lines, it will 296: # also serve as a pi/4 argument reduction code. 297: # 298: 299: # p.1 300: # Trigred preforms argument reduction 301: # for the trigonometric functions. It 302: # takes one input argument, a D-format 303: # number in r1/r0 . The magnitude of 304: # the input argument must be greater 305: # than or equal to 1/2 . Trigred produces 306: # three results: the number of the octant 307: # occupied by the argument, the reduced 308: # argument, and an extension of the 309: # reduced argument. The octant number is 310: # returned in r0 . The reduced argument 311: # is returned as a D-format number in 312: # r2/r1 . An 8 bit extension of the 313: # reduced argument is returned as an 314: # F-format number in r3. 315: # p.2 316: trigred: 317: # 318: # Save the sign of the input argument. 319: # 320: movw r0,-(sp) 321: # 322: # Extract the exponent field. 323: # 324: extzv $7,$7,r0,r2 325: # 326: # Convert the fraction part of the input 327: # argument into a quadword integer. 328: # 329: bicw2 $0xff80,r0 330: bisb2 $0x80,r0 # -S.McD 331: rotl $16,r0,r0 332: rotl $16,r1,r1 333: # 334: # If r1 is negative, add 1 to r0 . This 335: # adjustment is made so that the two's 336: # complement multiplications done later 337: # will produce unsigned results. 338: # 339: bgeq posmid 340: incl r0 341: posmid: 342: # p.3 343: # 344: # Set r3 to the address of the first quadword 345: # used to obtain the needed portion of 2/pi . 346: # The address is longword aligned to ensure 347: # efficient access. 348: # 349: ashl $-3,r2,r3 350: bicb2 $3,r3 351: subl3 r3,$bits2opi,r3 352: # 353: # Set r2 to the size of the shift needed to 354: # obtain the correct portion of 2/pi . 355: # 356: bicb2 $0xe0,r2 357: # p.4 358: # 359: # Move the needed 128 bits of 2/pi into 360: # r11 - r8 . Adjust the numbers to allow 361: # for unsigned multiplication. 362: # 363: ashq r2,(r3),r10 364: 365: subl2 $4,r3 366: ashq r2,(r3),r9 367: bgeq signoff1 368: incl r11 369: signoff1: 370: subl2 $4,r3 371: ashq r2,(r3),r8 372: bgeq signoff2 373: incl r10 374: signoff2: 375: subl2 $4,r3 376: ashq r2,(r3),r7 377: bgeq signoff3 378: incl r9 379: signoff3: 380: # p.5 381: # 382: # Multiply the contents of r0/r1 by the 383: # slice of 2/pi in r11 - r8 . 384: # 385: emul r0,r8,$0,r4 386: emul r0,r9,r5,r5 387: emul r0,r10,r6,r6 388: 389: emul r1,r8,$0,r7 390: emul r1,r9,r8,r8 391: emul r1,r10,r9,r9 392: emul r1,r11,r10,r10 393: 394: addl2 r4,r8 395: adwc r5,r9 396: adwc r6,r10 397: # p.6 398: # 399: # If there are more than five leading zeros 400: # after the first two quotient bits or if there 401: # are more than five leading ones after the first 402: # two quotient bits, generate more fraction bits. 403: # Otherwise, branch to code to produce the result. 404: # 405: bicl3 $0xc1ffffff,r10,r4 406: beql more1 407: cmpl $0x3e000000,r4 408: bneq result 409: more1: 410: # p.7 411: # 412: # generate another 32 result bits. 413: # 414: subl2 $4,r3 415: ashq r2,(r3),r5 416: bgeq signoff4 417: 418: emul r1,r6,$0,r4 419: addl2 r1,r5 420: emul r0,r6,r5,r5 421: addl2 r0,r6 422: brb addbits1 423: 424: signoff4: 425: emul r1,r6,$0,r4 426: emul r0,r6,r5,r5 427: 428: addbits1: 429: addl2 r5,r7 430: adwc r6,r8 431: adwc $0,r9 432: adwc $0,r10 433: # p.8 434: # 435: # Check for massive cancellation. 436: # 437: bicl3 $0xc0000000,r10,r6 438: # bneq more2 -S.McD Test was backwards 439: beql more2 440: cmpl $0x3fffffff,r6 441: bneq result 442: more2: 443: # p.9 444: # 445: # If massive cancellation has occurred, 446: # generate another 24 result bits. 447: # Testing has shown there will always be 448: # enough bits after this point. 449: # 450: subl2 $4,r3 451: ashq r2,(r3),r5 452: bgeq signoff5 453: 454: emul r0,r6,r4,r5 455: addl2 r0,r6 456: brb addbits2 457: 458: signoff5: 459: emul r0,r6,r4,r5 460: 461: addbits2: 462: addl2 r6,r7 463: adwc $0,r8 464: adwc $0,r9 465: adwc $0,r10 466: # p.10 467: # 468: # The following code produces the reduced 469: # argument from the product bits contained 470: # in r10 - r7 . 471: # 472: result: 473: # 474: # Extract the octant number from r10 . 475: # 476: # extzv $29,$3,r10,r0 ...used for pi/4 reduction -S.McD 477: extzv $30,$2,r10,r0 478: # 479: # Clear the octant bits in r10 . 480: # 481: # bicl2 $0xe0000000,r10 ...used for pi/4 reduction -S.McD 482: bicl2 $0xc0000000,r10 483: # 484: # Zero the sign flag. 485: # 486: clrl r5 487: # p.11 488: # 489: # Check to see if the fraction is greater than 490: # or equal to one-half. If it is, add one 491: # to the octant number, set the sign flag 492: # on, and replace the fraction with 1 minus 493: # the fraction. 494: # 495: # bitl $0x10000000,r10 ...used for pi/4 reduction -S.McD 496: bitl $0x20000000,r10 497: beql small 498: incl r0 499: incl r5 500: # subl3 r10,$0x1fffffff,r10 ...used for pi/4 reduction -S.McD 501: subl3 r10,$0x3fffffff,r10 502: mcoml r9,r9 503: mcoml r8,r8 504: mcoml r7,r7 505: small: 506: # p.12 507: # 508: ## Test whether the first 29 bits of the ...used for pi/4 reduction -S.McD 509: # Test whether the first 30 bits of the 510: # fraction are zero. 511: # 512: tstl r10 513: beql tiny 514: # 515: # Find the position of the first one bit in r10 . 516: # 517: cvtld r10,r1 518: extzv $7,$7,r1,r1 519: # 520: # Compute the size of the shift needed. 521: # 522: subl3 r1,$32,r6 523: # 524: # Shift up the high order 64 bits of the 525: # product. 526: # 527: ashq r6,r9,r10 528: ashq r6,r8,r9 529: brb mult 530: # p.13 531: # 532: # Test to see if the sign bit of r9 is on. 533: # 534: tiny: 535: tstl r9 536: bgeq tinier 537: # 538: # If it is, shift the product bits up 32 bits. 539: # 540: movl $32,r6 541: movq r8,r10 542: tstl r10 543: brb mult 544: # p.14 545: # 546: # Test whether r9 is zero. It is probably 547: # impossible for both r10 and r9 to be 548: # zero, but until proven to be so, the test 549: # must be made. 550: # 551: tinier: 552: beql zero 553: # 554: # Find the position of the first one bit in r9 . 555: # 556: cvtld r9,r1 557: extzv $7,$7,r1,r1 558: # 559: # Compute the size of the shift needed. 560: # 561: subl3 r1,$32,r1 562: addl3 $32,r1,r6 563: # 564: # Shift up the high order 64 bits of the 565: # product. 566: # 567: ashq r1,r8,r10 568: ashq r1,r7,r9 569: brb mult 570: # p.15 571: # 572: # The following code sets the reduced 573: # argument to zero. 574: # 575: zero: 576: clrl r1 577: clrl r2 578: clrl r3 579: brw return 580: # p.16 581: # 582: # At this point, r0 contains the octant number, 583: # r6 indicates the number of bits the fraction 584: # has been shifted, r5 indicates the sign of 585: # the fraction, r11/r10 contain the high order 586: # 64 bits of the fraction, and the condition 587: # codes indicate where the sign bit of r10 588: # is on. The following code multiplies the 589: # fraction by pi/2 . 590: # 591: mult: 592: # 593: # Save r11/r10 in r4/r1 . -S.McD 594: movl r11,r4 595: movl r10,r1 596: # 597: # If the sign bit of r10 is on, add 1 to r11 . 598: # 599: bgeq signoff6 600: incl r11 601: signoff6: 602: # p.17 603: # 604: # Move pi/2 into r3/r2 . 605: # 606: movq $0xc90fdaa22168c235,r2 607: # 608: # Multiply the fraction by the portion of pi/2 609: # in r2 . 610: # 611: emul r2,r10,$0,r7 612: emul r2,r11,r8,r7 613: # 614: # Multiply the fraction by the portion of pi/2 615: # in r3 . 616: emul r3,r10,$0,r9 617: emul r3,r11,r10,r10 618: # 619: # Add the product bits together. 620: # 621: addl2 r7,r9 622: adwc r8,r10 623: adwc $0,r11 624: # 625: # Compensate for not sign extending r8 above.-S.McD 626: # 627: tstl r8 628: bgeq signoff6a 629: decl r11 630: signoff6a: 631: # 632: # Compensate for r11/r10 being unsigned. -S.McD 633: # 634: addl2 r2,r10 635: adwc r3,r11 636: # 637: # Compensate for r3/r2 being unsigned. -S.McD 638: # 639: addl2 r1,r10 640: adwc r4,r11 641: # p.18 642: # 643: # If the sign bit of r11 is zero, shift the 644: # product bits up one bit and increment r6 . 645: # 646: blss signon 647: incl r6 648: ashq $1,r10,r10 649: tstl r9 650: bgeq signoff7 651: incl r10 652: signoff7: 653: signon: 654: # p.19 655: # 656: # Shift the 56 most significant product 657: # bits into r9/r8 . The sign extension 658: # will be handled later. 659: # 660: ashq $-8,r10,r8 661: # 662: # Convert the low order 8 bits of r10 663: # into an F-format number. 664: # 665: cvtbf r10,r3 666: # 667: # If the result of the conversion was 668: # negative, add 1 to r9/r8 . 669: # 670: bgeq chop 671: incl r8 672: adwc $0,r9 673: # 674: # If r9 is now zero, branch to special 675: # code to handle that possibility. 676: # 677: beql carryout 678: chop: 679: # p.20 680: # 681: # Convert the number in r9/r8 into 682: # D-format number in r2/r1 . 683: # 684: rotl $16,r8,r2 685: rotl $16,r9,r1 686: # 687: # Set the exponent field to the appropriate 688: # value. Note that the extra bits created by 689: # sign extension are now eliminated. 690: # 691: subw3 r6,$131,r6 692: insv r6,$7,$9,r1 693: # 694: # Set the exponent field of the F-format 695: # number in r3 to the appropriate value. 696: # 697: tstf r3 698: beql return 699: # extzv $7,$8,r3,r4 -S.McD 700: extzv $7,$7,r3,r4 701: addw2 r4,r6 702: # subw2 $217,r6 -S.McD 703: subw2 $64,r6 704: insv r6,$7,$8,r3 705: brb return 706: # p.21 707: # 708: # The following code generates the appropriate 709: # result for the unlikely possibility that 710: # rounding the number in r9/r8 resulted in 711: # a carry out. 712: # 713: carryout: 714: clrl r1 715: clrl r2 716: subw3 r6,$132,r6 717: insv r6,$7,$9,r1 718: tstf r3 719: beql return 720: extzv $7,$8,r3,r4 721: addw2 r4,r6 722: subw2 $218,r6 723: insv r6,$7,$8,r3 724: # p.22 725: # 726: # The following code makes an needed 727: # adjustments to the signs of the 728: # results or to the octant number, and 729: # then returns. 730: # 731: return: 732: # 733: # Test if the fraction was greater than or 734: # equal to 1/2 . If so, negate the reduced 735: # argument. 736: # 737: blbc r5,signoff8 738: mnegf r1,r1 739: mnegf r3,r3 740: signoff8: 741: # p.23 742: # 743: # If the original argument was negative, 744: # negate the reduce argument and 745: # adjust the octant number. 746: # 747: tstw (sp)+ 748: bgeq signoff9 749: mnegf r1,r1 750: mnegf r3,r3 751: # subb3 r0,$8,r0 ...used for pi/4 reduction -S.McD 752: subb3 r0,$4,r0 753: signoff9: 754: # 755: # Clear all unneeded octant bits. 756: # 757: # bicb2 $0xf8,r0 ...used for pi/4 reduction -S.McD 758: bicb2 $0xfc,r0 759: # 760: # Return. 761: # 762: rsb