1: #ifndef lint 2: static char sccsid[] = "@(#)j0.c 4.2 (Berkeley) 8/21/85"; 3: #endif not lint 4: 5: /* 6: floating point Bessel's function 7: of the first and second kinds 8: of order zero 9: 10: j0(x) returns the value of J0(x) 11: for all real values of x. 12: 13: There are no error returns. 14: Calls sin, cos, sqrt. 15: 16: There is a niggling bug in J0 which 17: causes errors up to 2e-16 for x in the 18: interval [-8,8]. 19: The bug is caused by an inappropriate order 20: of summation of the series. rhm will fix it 21: someday. 22: 23: Coefficients are from Hart & Cheney. 24: #5849 (19.22D) 25: #6549 (19.25D) 26: #6949 (19.41D) 27: 28: y0(x) returns the value of Y0(x) 29: for positive real values of x. 30: For x<=0, if on the VAX, error number EDOM is set and 31: the reserved operand fault is generated; 32: otherwise (an IEEE machine) an invalid operation is performed. 33: 34: Calls sin, cos, sqrt, log, j0. 35: 36: The values of Y0 have not been checked 37: to more than ten places. 38: 39: Coefficients are from Hart & Cheney. 40: #6245 (18.78D) 41: #6549 (19.25D) 42: #6949 (19.41D) 43: */ 44: 45: #include <math.h> 46: #ifdef VAX 47: #include <errno.h> 48: #else /* IEEE double */ 49: static double zero = 0.e0; 50: #endif 51: static double pzero, qzero; 52: static double tpi = .6366197723675813430755350535e0; 53: static double pio4 = .7853981633974483096156608458e0; 54: static double p1[] = { 55: 0.4933787251794133561816813446e21, 56: -.1179157629107610536038440800e21, 57: 0.6382059341072356562289432465e19, 58: -.1367620353088171386865416609e18, 59: 0.1434354939140344111664316553e16, 60: -.8085222034853793871199468171e13, 61: 0.2507158285536881945555156435e11, 62: -.4050412371833132706360663322e8, 63: 0.2685786856980014981415848441e5, 64: }; 65: static double q1[] = { 66: 0.4933787251794133562113278438e21, 67: 0.5428918384092285160200195092e19, 68: 0.3024635616709462698627330784e17, 69: 0.1127756739679798507056031594e15, 70: 0.3123043114941213172572469442e12, 71: 0.6699987672982239671814028660e9, 72: 0.1114636098462985378182402543e7, 73: 0.1363063652328970604442810507e4, 74: 1.0 75: }; 76: static double p2[] = { 77: 0.5393485083869438325262122897e7, 78: 0.1233238476817638145232406055e8, 79: 0.8413041456550439208464315611e7, 80: 0.2016135283049983642487182349e7, 81: 0.1539826532623911470917825993e6, 82: 0.2485271928957404011288128951e4, 83: 0.0, 84: }; 85: static double q2[] = { 86: 0.5393485083869438325560444960e7, 87: 0.1233831022786324960844856182e8, 88: 0.8426449050629797331554404810e7, 89: 0.2025066801570134013891035236e7, 90: 0.1560017276940030940592769933e6, 91: 0.2615700736920839685159081813e4, 92: 1.0, 93: }; 94: static double p3[] = { 95: -.3984617357595222463506790588e4, 96: -.1038141698748464093880530341e5, 97: -.8239066313485606568803548860e4, 98: -.2365956170779108192723612816e4, 99: -.2262630641933704113967255053e3, 100: -.4887199395841261531199129300e1, 101: 0.0, 102: }; 103: static double q3[] = { 104: 0.2550155108860942382983170882e6, 105: 0.6667454239319826986004038103e6, 106: 0.5332913634216897168722255057e6, 107: 0.1560213206679291652539287109e6, 108: 0.1570489191515395519392882766e5, 109: 0.4087714673983499223402830260e3, 110: 1.0, 111: }; 112: static double p4[] = { 113: -.2750286678629109583701933175e20, 114: 0.6587473275719554925999402049e20, 115: -.5247065581112764941297350814e19, 116: 0.1375624316399344078571335453e18, 117: -.1648605817185729473122082537e16, 118: 0.1025520859686394284509167421e14, 119: -.3436371222979040378171030138e11, 120: 0.5915213465686889654273830069e8, 121: -.4137035497933148554125235152e5, 122: }; 123: static double q4[] = { 124: 0.3726458838986165881989980e21, 125: 0.4192417043410839973904769661e19, 126: 0.2392883043499781857439356652e17, 127: 0.9162038034075185262489147968e14, 128: 0.2613065755041081249568482092e12, 129: 0.5795122640700729537480087915e9, 130: 0.1001702641288906265666651753e7, 131: 0.1282452772478993804176329391e4, 132: 1.0, 133: }; 134: 135: double 136: j0(arg) double arg;{ 137: double argsq, n, d; 138: double sin(), cos(), sqrt(); 139: int i; 140: 141: if(arg < 0.) arg = -arg; 142: if(arg > 8.){ 143: asympt(arg); 144: n = arg - pio4; 145: return(sqrt(tpi/arg)*(pzero*cos(n) - qzero*sin(n))); 146: } 147: argsq = arg*arg; 148: for(n=0,d=0,i=8;i>=0;i--){ 149: n = n*argsq + p1[i]; 150: d = d*argsq + q1[i]; 151: } 152: return(n/d); 153: } 154: 155: double 156: y0(arg) double arg;{ 157: double argsq, n, d; 158: double sin(), cos(), sqrt(), log(), j0(); 159: int i; 160: 161: if(arg <= 0.){ 162: #ifdef VAX 163: extern double infnan(); 164: return(infnan(EDOM)); /* NaN */ 165: #else /* IEEE double */ 166: return(zero/zero); /* IEEE machines: invalid operation */ 167: #endif 168: } 169: if(arg > 8.){ 170: asympt(arg); 171: n = arg - pio4; 172: return(sqrt(tpi/arg)*(pzero*sin(n) + qzero*cos(n))); 173: } 174: argsq = arg*arg; 175: for(n=0,d=0,i=8;i>=0;i--){ 176: n = n*argsq + p4[i]; 177: d = d*argsq + q4[i]; 178: } 179: return(n/d + tpi*j0(arg)*log(arg)); 180: } 181: 182: static 183: asympt(arg) double arg;{ 184: double zsq, n, d; 185: int i; 186: zsq = 64./(arg*arg); 187: for(n=0,d=0,i=6;i>=0;i--){ 188: n = n*zsq + p2[i]; 189: d = d*zsq + q2[i]; 190: } 191: pzero = n/d; 192: for(n=0,d=0,i=6;i>=0;i--){ 193: n = n*zsq + p3[i]; 194: d = d*zsq + q3[i]; 195: } 196: qzero = (8./arg)*(n/d); 197: }