1: #ifndef lint 2: static char sccsid[] = "@(#)j1.c 4.2 (Berkeley) 8/21/85"; 3: #endif not lint 4: 5: /* 6: floating point Bessel's function 7: of the first and second kinds 8: of order one 9: 10: j1(x) returns the value of J1(x) 11: for all real values of x. 12: 13: There are no error returns. 14: Calls sin, cos, sqrt. 15: 16: There is a niggling bug in J1 which 17: causes errors up to 2e-16 for x in the 18: interval [-8,8]. 19: The bug is caused by an inappropriate order 20: of summation of the series. rhm will fix it 21: someday. 22: 23: Coefficients are from Hart & Cheney. 24: #6050 (20.98D) 25: #6750 (19.19D) 26: #7150 (19.35D) 27: 28: y1(x) returns the value of Y1(x) 29: for positive real values of x. 30: For x<=0, if on the VAX, error number EDOM is set and 31: the reserved operand fault is generated; 32: otherwise (an IEEE machine) an invalid operation is performed. 33: 34: Calls sin, cos, sqrt, log, j1. 35: 36: The values of Y1 have not been checked 37: to more than ten places. 38: 39: Coefficients are from Hart & Cheney. 40: #6447 (22.18D) 41: #6750 (19.19D) 42: #7150 (19.35D) 43: */ 44: 45: #include <math.h> 46: #ifdef VAX 47: #include <errno.h> 48: #else /* IEEE double */ 49: static double zero = 0.e0; 50: #endif 51: static double pzero, qzero; 52: static double tpi = .6366197723675813430755350535e0; 53: static double pio4 = .7853981633974483096156608458e0; 54: static double p1[] = { 55: 0.581199354001606143928050809e21, 56: -.6672106568924916298020941484e20, 57: 0.2316433580634002297931815435e19, 58: -.3588817569910106050743641413e17, 59: 0.2908795263834775409737601689e15, 60: -.1322983480332126453125473247e13, 61: 0.3413234182301700539091292655e10, 62: -.4695753530642995859767162166e7, 63: 0.2701122710892323414856790990e4, 64: }; 65: static double q1[] = { 66: 0.1162398708003212287858529400e22, 67: 0.1185770712190320999837113348e20, 68: 0.6092061398917521746105196863e17, 69: 0.2081661221307607351240184229e15, 70: 0.5243710262167649715406728642e12, 71: 0.1013863514358673989967045588e10, 72: 0.1501793594998585505921097578e7, 73: 0.1606931573481487801970916749e4, 74: 1.0, 75: }; 76: static double p2[] = { 77: -.4435757816794127857114720794e7, 78: -.9942246505077641195658377899e7, 79: -.6603373248364939109255245434e7, 80: -.1523529351181137383255105722e7, 81: -.1098240554345934672737413139e6, 82: -.1611616644324610116477412898e4, 83: 0.0, 84: }; 85: static double q2[] = { 86: -.4435757816794127856828016962e7, 87: -.9934124389934585658967556309e7, 88: -.6585339479723087072826915069e7, 89: -.1511809506634160881644546358e7, 90: -.1072638599110382011903063867e6, 91: -.1455009440190496182453565068e4, 92: 1.0, 93: }; 94: static double p3[] = { 95: 0.3322091340985722351859704442e5, 96: 0.8514516067533570196555001171e5, 97: 0.6617883658127083517939992166e5, 98: 0.1849426287322386679652009819e5, 99: 0.1706375429020768002061283546e4, 100: 0.3526513384663603218592175580e2, 101: 0.0, 102: }; 103: static double q3[] = { 104: 0.7087128194102874357377502472e6, 105: 0.1819458042243997298924553839e7, 106: 0.1419460669603720892855755253e7, 107: 0.4002944358226697511708610813e6, 108: 0.3789022974577220264142952256e5, 109: 0.8638367769604990967475517183e3, 110: 1.0, 111: }; 112: static double p4[] = { 113: -.9963753424306922225996744354e23, 114: 0.2655473831434854326894248968e23, 115: -.1212297555414509577913561535e22, 116: 0.2193107339917797592111427556e20, 117: -.1965887462722140658820322248e18, 118: 0.9569930239921683481121552788e15, 119: -.2580681702194450950541426399e13, 120: 0.3639488548124002058278999428e10, 121: -.2108847540133123652824139923e7, 122: 0.0, 123: }; 124: static double q4[] = { 125: 0.5082067366941243245314424152e24, 126: 0.5435310377188854170800653097e22, 127: 0.2954987935897148674290758119e20, 128: 0.1082258259408819552553850180e18, 129: 0.2976632125647276729292742282e15, 130: 0.6465340881265275571961681500e12, 131: 0.1128686837169442121732366891e10, 132: 0.1563282754899580604737366452e7, 133: 0.1612361029677000859332072312e4, 134: 1.0, 135: }; 136: 137: double 138: j1(arg) double arg;{ 139: double xsq, n, d, x; 140: double sin(), cos(), sqrt(); 141: int i; 142: 143: x = arg; 144: if(x < 0.) x = -x; 145: if(x > 8.){ 146: asympt(x); 147: n = x - 3.*pio4; 148: n = sqrt(tpi/x)*(pzero*cos(n) - qzero*sin(n)); 149: if(arg <0.) n = -n; 150: return(n); 151: } 152: xsq = x*x; 153: for(n=0,d=0,i=8;i>=0;i--){ 154: n = n*xsq + p1[i]; 155: d = d*xsq + q1[i]; 156: } 157: return(arg*n/d); 158: } 159: 160: double 161: y1(arg) double arg;{ 162: double xsq, n, d, x; 163: double sin(), cos(), sqrt(), log(), j1(); 164: int i; 165: 166: x = arg; 167: if(x <= 0.){ 168: #ifdef VAX 169: extern double infnan(); 170: return(infnan(EDOM)); /* NaN */ 171: #else /* IEEE double */ 172: return(zero/zero); /* IEEE machines: invalid operation */ 173: #endif 174: } 175: if(x > 8.){ 176: asympt(x); 177: n = x - 3*pio4; 178: return(sqrt(tpi/x)*(pzero*sin(n) + qzero*cos(n))); 179: } 180: xsq = x*x; 181: for(n=0,d=0,i=9;i>=0;i--){ 182: n = n*xsq + p4[i]; 183: d = d*xsq + q4[i]; 184: } 185: return(x*n/d + tpi*(j1(x)*log(x)-1./x)); 186: } 187: 188: static 189: asympt(arg) double arg;{ 190: double zsq, n, d; 191: int i; 192: zsq = 64./(arg*arg); 193: for(n=0,d=0,i=6;i>=0;i--){ 194: n = n*zsq + p2[i]; 195: d = d*zsq + q2[i]; 196: } 197: pzero = n/d; 198: for(n=0,d=0,i=6;i>=0;i--){ 199: n = n*zsq + p3[i]; 200: d = d*zsq + q3[i]; 201: } 202: qzero = (8./arg)*(n/d); 203: }