1: /* @(#)j1.c 4.1 12/25/82 */ 2: 3: /* 4: floating point Bessel's function 5: of the first and second kinds 6: of order one 7: 8: j1(x) returns the value of J1(x) 9: for all real values of x. 10: 11: There are no error returns. 12: Calls sin, cos, sqrt. 13: 14: There is a niggling bug in J1 which 15: causes errors up to 2e-16 for x in the 16: interval [-8,8]. 17: The bug is caused by an inappropriate order 18: of summation of the series. rhm will fix it 19: someday. 20: 21: Coefficients are from Hart & Cheney. 22: #6050 (20.98D) 23: #6750 (19.19D) 24: #7150 (19.35D) 25: 26: y1(x) returns the value of Y1(x) 27: for positive real values of x. 28: For x<=0, error number EDOM is set and a 29: large negative value is returned. 30: 31: Calls sin, cos, sqrt, log, j1. 32: 33: The values of Y1 have not been checked 34: to more than ten places. 35: 36: Coefficients are from Hart & Cheney. 37: #6447 (22.18D) 38: #6750 (19.19D) 39: #7150 (19.35D) 40: */ 41: 42: #include <math.h> 43: #include <errno.h> 44: 45: int errno; 46: static double pzero, qzero; 47: static double tpi = .6366197723675813430755350535e0; 48: static double pio4 = .7853981633974483096156608458e0; 49: static double p1[] = { 50: 0.581199354001606143928050809e21, 51: -.6672106568924916298020941484e20, 52: 0.2316433580634002297931815435e19, 53: -.3588817569910106050743641413e17, 54: 0.2908795263834775409737601689e15, 55: -.1322983480332126453125473247e13, 56: 0.3413234182301700539091292655e10, 57: -.4695753530642995859767162166e7, 58: 0.2701122710892323414856790990e4, 59: }; 60: static double q1[] = { 61: 0.1162398708003212287858529400e22, 62: 0.1185770712190320999837113348e20, 63: 0.6092061398917521746105196863e17, 64: 0.2081661221307607351240184229e15, 65: 0.5243710262167649715406728642e12, 66: 0.1013863514358673989967045588e10, 67: 0.1501793594998585505921097578e7, 68: 0.1606931573481487801970916749e4, 69: 1.0, 70: }; 71: static double p2[] = { 72: -.4435757816794127857114720794e7, 73: -.9942246505077641195658377899e7, 74: -.6603373248364939109255245434e7, 75: -.1523529351181137383255105722e7, 76: -.1098240554345934672737413139e6, 77: -.1611616644324610116477412898e4, 78: 0.0, 79: }; 80: static double q2[] = { 81: -.4435757816794127856828016962e7, 82: -.9934124389934585658967556309e7, 83: -.6585339479723087072826915069e7, 84: -.1511809506634160881644546358e7, 85: -.1072638599110382011903063867e6, 86: -.1455009440190496182453565068e4, 87: 1.0, 88: }; 89: static double p3[] = { 90: 0.3322091340985722351859704442e5, 91: 0.8514516067533570196555001171e5, 92: 0.6617883658127083517939992166e5, 93: 0.1849426287322386679652009819e5, 94: 0.1706375429020768002061283546e4, 95: 0.3526513384663603218592175580e2, 96: 0.0, 97: }; 98: static double q3[] = { 99: 0.7087128194102874357377502472e6, 100: 0.1819458042243997298924553839e7, 101: 0.1419460669603720892855755253e7, 102: 0.4002944358226697511708610813e6, 103: 0.3789022974577220264142952256e5, 104: 0.8638367769604990967475517183e3, 105: 1.0, 106: }; 107: static double p4[] = { 108: -.9963753424306922225996744354e23, 109: 0.2655473831434854326894248968e23, 110: -.1212297555414509577913561535e22, 111: 0.2193107339917797592111427556e20, 112: -.1965887462722140658820322248e18, 113: 0.9569930239921683481121552788e15, 114: -.2580681702194450950541426399e13, 115: 0.3639488548124002058278999428e10, 116: -.2108847540133123652824139923e7, 117: 0.0, 118: }; 119: static double q4[] = { 120: 0.5082067366941243245314424152e24, 121: 0.5435310377188854170800653097e22, 122: 0.2954987935897148674290758119e20, 123: 0.1082258259408819552553850180e18, 124: 0.2976632125647276729292742282e15, 125: 0.6465340881265275571961681500e12, 126: 0.1128686837169442121732366891e10, 127: 0.1563282754899580604737366452e7, 128: 0.1612361029677000859332072312e4, 129: 1.0, 130: }; 131: 132: double 133: j1(arg) double arg;{ 134: double xsq, n, d, x; 135: double sin(), cos(), sqrt(); 136: int i; 137: 138: x = arg; 139: if(x < 0.) x = -x; 140: if(x > 8.){ 141: asympt(x); 142: n = x - 3.*pio4; 143: n = sqrt(tpi/x)*(pzero*cos(n) - qzero*sin(n)); 144: if(arg <0.) n = -n; 145: return(n); 146: } 147: xsq = x*x; 148: for(n=0,d=0,i=8;i>=0;i--){ 149: n = n*xsq + p1[i]; 150: d = d*xsq + q1[i]; 151: } 152: return(arg*n/d); 153: } 154: 155: double 156: y1(arg) double arg;{ 157: double xsq, n, d, x; 158: double sin(), cos(), sqrt(), log(), j1(); 159: int i; 160: 161: errno = 0; 162: x = arg; 163: if(x <= 0.){ 164: errno = EDOM; 165: return(-HUGE); 166: } 167: if(x > 8.){ 168: asympt(x); 169: n = x - 3*pio4; 170: return(sqrt(tpi/x)*(pzero*sin(n) + qzero*cos(n))); 171: } 172: xsq = x*x; 173: for(n=0,d=0,i=9;i>=0;i--){ 174: n = n*xsq + p4[i]; 175: d = d*xsq + q4[i]; 176: } 177: return(x*n/d + tpi*(j1(x)*log(x)-1./x)); 178: } 179: 180: static 181: asympt(arg) double arg;{ 182: double zsq, n, d; 183: int i; 184: zsq = 64./(arg*arg); 185: for(n=0,d=0,i=6;i>=0;i--){ 186: n = n*zsq + p2[i]; 187: d = d*zsq + q2[i]; 188: } 189: pzero = n/d; 190: for(n=0,d=0,i=6;i>=0;i--){ 191: n = n*zsq + p3[i]; 192: d = d*zsq + q3[i]; 193: } 194: qzero = (8./arg)*(n/d); 195: }