1: #if defined(LIBC_SCCS) && !defined(lint) 2: static char sccsid[] = "@(#)crypt.c 5.3.1.1 (Berkeley) 10/21/90"; 3: #endif LIBC_SCCS and not lint 4: 5: /* 6: * This program implements the 7: * Proposed Federal Information Processing 8: * Data Encryption Standard. 9: * See Federal Register, March 17, 1975 (40FR12134) 10: */ 11: 12: /* 13: * Initial permutation, 14: */ 15: static char IP[] = { 16: 58,50,42,34,26,18,10, 2, 17: 60,52,44,36,28,20,12, 4, 18: 62,54,46,38,30,22,14, 6, 19: 64,56,48,40,32,24,16, 8, 20: 57,49,41,33,25,17, 9, 1, 21: 59,51,43,35,27,19,11, 3, 22: 61,53,45,37,29,21,13, 5, 23: 63,55,47,39,31,23,15, 7, 24: }; 25: 26: /* 27: * Final permutation, FP = IP^(-1) 28: */ 29: static char FP[] = { 30: 40, 8,48,16,56,24,64,32, 31: 39, 7,47,15,55,23,63,31, 32: 38, 6,46,14,54,22,62,30, 33: 37, 5,45,13,53,21,61,29, 34: 36, 4,44,12,52,20,60,28, 35: 35, 3,43,11,51,19,59,27, 36: 34, 2,42,10,50,18,58,26, 37: 33, 1,41, 9,49,17,57,25, 38: }; 39: 40: /* 41: * Permuted-choice 1 from the key bits 42: * to yield C and D. 43: * Note that bits 8,16... are left out: 44: * They are intended for a parity check. 45: */ 46: static char PC1_C[] = { 47: 57,49,41,33,25,17, 9, 48: 1,58,50,42,34,26,18, 49: 10, 2,59,51,43,35,27, 50: 19,11, 3,60,52,44,36, 51: }; 52: 53: static char PC1_D[] = { 54: 63,55,47,39,31,23,15, 55: 7,62,54,46,38,30,22, 56: 14, 6,61,53,45,37,29, 57: 21,13, 5,28,20,12, 4, 58: }; 59: 60: /* 61: * Sequence of shifts used for the key schedule. 62: */ 63: static char shifts[] = { 64: 1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1, 65: }; 66: 67: /* 68: * Permuted-choice 2, to pick out the bits from 69: * the CD array that generate the key schedule. 70: */ 71: static char PC2_C[] = { 72: 14,17,11,24, 1, 5, 73: 3,28,15, 6,21,10, 74: 23,19,12, 4,26, 8, 75: 16, 7,27,20,13, 2, 76: }; 77: 78: static char PC2_D[] = { 79: 41,52,31,37,47,55, 80: 30,40,51,45,33,48, 81: 44,49,39,56,34,53, 82: 46,42,50,36,29,32, 83: }; 84: 85: /* 86: * The C and D arrays used to calculate the key schedule. 87: */ 88: 89: static char C[28]; 90: static char D[28]; 91: /* 92: * The key schedule. 93: * Generated from the key. 94: */ 95: static char KS[16][48]; 96: 97: /* 98: * The E bit-selection table. 99: */ 100: static char E[48]; 101: static char e[] = { 102: 32, 1, 2, 3, 4, 5, 103: 4, 5, 6, 7, 8, 9, 104: 8, 9,10,11,12,13, 105: 12,13,14,15,16,17, 106: 16,17,18,19,20,21, 107: 20,21,22,23,24,25, 108: 24,25,26,27,28,29, 109: 28,29,30,31,32, 1, 110: }; 111: 112: /* 113: * Set up the key schedule from the key. 114: */ 115: 116: setkey(key) 117: char *key; 118: { 119: register i, j, k; 120: int t; 121: 122: /* 123: * First, generate C and D by permuting 124: * the key. The low order bit of each 125: * 8-bit char is not used, so C and D are only 28 126: * bits apiece. 127: */ 128: for (i=0; i<28; i++) { 129: C[i] = key[PC1_C[i]-1]; 130: D[i] = key[PC1_D[i]-1]; 131: } 132: /* 133: * To generate Ki, rotate C and D according 134: * to schedule and pick up a permutation 135: * using PC2. 136: */ 137: for (i=0; i<16; i++) { 138: /* 139: * rotate. 140: */ 141: for (k=0; k<shifts[i]; k++) { 142: t = C[0]; 143: for (j=0; j<28-1; j++) 144: C[j] = C[j+1]; 145: C[27] = t; 146: t = D[0]; 147: for (j=0; j<28-1; j++) 148: D[j] = D[j+1]; 149: D[27] = t; 150: } 151: /* 152: * get Ki. Note C and D are concatenated. 153: */ 154: for (j=0; j<24; j++) { 155: KS[i][j] = C[PC2_C[j]-1]; 156: KS[i][j+24] = D[PC2_D[j]-28-1]; 157: } 158: } 159: 160: for(i=0;i<48;i++) 161: E[i] = e[i]; 162: } 163: 164: /* 165: * The 8 selection functions. 166: * For some reason, they give a 0-origin 167: * index, unlike everything else. 168: */ 169: static char S[8][64] = { 170: 14, 4,13, 1, 2,15,11, 8, 3,10, 6,12, 5, 9, 0, 7, 171: 0,15, 7, 4,14, 2,13, 1,10, 6,12,11, 9, 5, 3, 8, 172: 4, 1,14, 8,13, 6, 2,11,15,12, 9, 7, 3,10, 5, 0, 173: 15,12, 8, 2, 4, 9, 1, 7, 5,11, 3,14,10, 0, 6,13, 174: 175: 15, 1, 8,14, 6,11, 3, 4, 9, 7, 2,13,12, 0, 5,10, 176: 3,13, 4, 7,15, 2, 8,14,12, 0, 1,10, 6, 9,11, 5, 177: 0,14, 7,11,10, 4,13, 1, 5, 8,12, 6, 9, 3, 2,15, 178: 13, 8,10, 1, 3,15, 4, 2,11, 6, 7,12, 0, 5,14, 9, 179: 180: 10, 0, 9,14, 6, 3,15, 5, 1,13,12, 7,11, 4, 2, 8, 181: 13, 7, 0, 9, 3, 4, 6,10, 2, 8, 5,14,12,11,15, 1, 182: 13, 6, 4, 9, 8,15, 3, 0,11, 1, 2,12, 5,10,14, 7, 183: 1,10,13, 0, 6, 9, 8, 7, 4,15,14, 3,11, 5, 2,12, 184: 185: 7,13,14, 3, 0, 6, 9,10, 1, 2, 8, 5,11,12, 4,15, 186: 13, 8,11, 5, 6,15, 0, 3, 4, 7, 2,12, 1,10,14, 9, 187: 10, 6, 9, 0,12,11, 7,13,15, 1, 3,14, 5, 2, 8, 4, 188: 3,15, 0, 6,10, 1,13, 8, 9, 4, 5,11,12, 7, 2,14, 189: 190: 2,12, 4, 1, 7,10,11, 6, 8, 5, 3,15,13, 0,14, 9, 191: 14,11, 2,12, 4, 7,13, 1, 5, 0,15,10, 3, 9, 8, 6, 192: 4, 2, 1,11,10,13, 7, 8,15, 9,12, 5, 6, 3, 0,14, 193: 11, 8,12, 7, 1,14, 2,13, 6,15, 0, 9,10, 4, 5, 3, 194: 195: 12, 1,10,15, 9, 2, 6, 8, 0,13, 3, 4,14, 7, 5,11, 196: 10,15, 4, 2, 7,12, 9, 5, 6, 1,13,14, 0,11, 3, 8, 197: 9,14,15, 5, 2, 8,12, 3, 7, 0, 4,10, 1,13,11, 6, 198: 4, 3, 2,12, 9, 5,15,10,11,14, 1, 7, 6, 0, 8,13, 199: 200: 4,11, 2,14,15, 0, 8,13, 3,12, 9, 7, 5,10, 6, 1, 201: 13, 0,11, 7, 4, 9, 1,10,14, 3, 5,12, 2,15, 8, 6, 202: 1, 4,11,13,12, 3, 7,14,10,15, 6, 8, 0, 5, 9, 2, 203: 6,11,13, 8, 1, 4,10, 7, 9, 5, 0,15,14, 2, 3,12, 204: 205: 13, 2, 8, 4, 6,15,11, 1,10, 9, 3,14, 5, 0,12, 7, 206: 1,15,13, 8,10, 3, 7, 4,12, 5, 6,11, 0,14, 9, 2, 207: 7,11, 4, 1, 9,12,14, 2, 0, 6,10,13,15, 3, 5, 8, 208: 2, 1,14, 7, 4,10, 8,13,15,12, 9, 0, 3, 5, 6,11, 209: }; 210: 211: /* 212: * P is a permutation on the selected combination 213: * of the current L and key. 214: */ 215: static char P[] = { 216: 16, 7,20,21, 217: 29,12,28,17, 218: 1,15,23,26, 219: 5,18,31,10, 220: 2, 8,24,14, 221: 32,27, 3, 9, 222: 19,13,30, 6, 223: 22,11, 4,25, 224: }; 225: 226: /* 227: * The current block, divided into 2 halves. 228: */ 229: static char L[64], *R = L+32; 230: static char tempL[32]; 231: static char f[32]; 232: 233: /* 234: * The combination of the key and the input, before selection. 235: */ 236: static char preS[48]; 237: 238: /* 239: * The payoff: encrypt a block. 240: */ 241: 242: encrypt(block, edflag) 243: char *block; 244: { 245: int i, ii; 246: register t, j, k; 247: 248: /* 249: * First, permute the bits in the input 250: */ 251: for (j=0; j<64; j++) 252: L[j] = block[IP[j]-1]; 253: /* 254: * Perform an encryption operation 16 times. 255: */ 256: for (ii=0; ii<16; ii++) { 257: /* 258: * Only encrypt for now. 259: */ 260: i = ii; 261: /* 262: * Save the R array, 263: * which will be the new L. 264: */ 265: for (j=0; j<32; j++) 266: tempL[j] = R[j]; 267: /* 268: * Expand R to 48 bits using the E selector; 269: * exclusive-or with the current key bits. 270: */ 271: for (j=0; j<48; j++) 272: preS[j] = R[E[j]-1] ^ KS[i][j]; 273: /* 274: * The pre-select bits are now considered 275: * in 8 groups of 6 bits each. 276: * The 8 selection functions map these 277: * 6-bit quantities into 4-bit quantities 278: * and the results permuted 279: * to make an f(R, K). 280: * The indexing into the selection functions 281: * is peculiar; it could be simplified by 282: * rewriting the tables. 283: */ 284: for (j=0; j<8; j++) { 285: t = 6*j; 286: k = S[j][(preS[t+0]<<5)+ 287: (preS[t+1]<<3)+ 288: (preS[t+2]<<2)+ 289: (preS[t+3]<<1)+ 290: (preS[t+4]<<0)+ 291: (preS[t+5]<<4)]; 292: t = 4*j; 293: f[t+0] = (k>>3)&01; 294: f[t+1] = (k>>2)&01; 295: f[t+2] = (k>>1)&01; 296: f[t+3] = (k>>0)&01; 297: } 298: /* 299: * The new R is L ^ f(R, K). 300: * The f here has to be permuted first, though. 301: */ 302: for (j=0; j<32; j++) 303: R[j] = L[j] ^ f[P[j]-1]; 304: /* 305: * Finally, the new L (the original R) 306: * is copied back. 307: */ 308: for (j=0; j<32; j++) 309: L[j] = tempL[j]; 310: } 311: /* 312: * The output L and R are reversed. 313: */ 314: for (j=0; j<32; j++) { 315: t = L[j]; 316: L[j] = R[j]; 317: R[j] = t; 318: } 319: /* 320: * The final output 321: * gets the inverse permutation of the very original. 322: */ 323: for (j=0; j<64; j++) 324: block[j] = L[FP[j]-1]; 325: } 326: 327: char * 328: crypt(pw,salt) 329: char *pw; 330: char *salt; 331: { 332: register i, j, c; 333: int temp; 334: static char block[66], iobuf[16]; 335: 336: for(i=0; i<66; i++) 337: block[i] = 0; 338: for(i=0; (c= *pw) && i<64; pw++){ 339: for(j=0; j<7; j++, i++) 340: block[i] = (c>>(6-j)) & 01; 341: i++; 342: } 343: 344: setkey(block); 345: 346: for(i=0; i<66; i++) 347: block[i] = 0; 348: 349: for(i=0;i<2;i++){ 350: c = *salt++; 351: iobuf[i] = c; 352: if(c>'Z') c -= 6; 353: if(c>'9') c -= 7; 354: c -= '.'; 355: for(j=0;j<6;j++){ 356: if((c>>j) & 01){ 357: temp = E[6*i+j]; 358: E[6*i+j] = E[6*i+j+24]; 359: E[6*i+j+24] = temp; 360: } 361: } 362: } 363: 364: for(i=0; i<25; i++) 365: encrypt(block,0); 366: 367: for(i=0; i<11; i++){ 368: c = 0; 369: for(j=0; j<6; j++){ 370: c <<= 1; 371: c |= block[6*i+j]; 372: } 373: c += '.'; 374: if(c>'9') c += 7; 375: if(c>'Z') c += 6; 376: iobuf[i+2] = c; 377: } 378: iobuf[i+2] = 0; 379: if(iobuf[1]==0) 380: iobuf[1] = iobuf[0]; 381: return(iobuf); 382: }