/* * Copyright (c) 1986 Regents of the University of California. * All rights reserved. The Berkeley software License Agreement * specifies the terms and conditions for redistribution. * * @(#)kern_clock.c 1.4 (2.11BSD GTE) 1997/2/14 */ #include "param.h" #include "../machine/psl.h" #include "../machine/seg.h" #include "user.h" #include "proc.h" #include "callout.h" #include "dk.h" #include "kernel.h" #include "systm.h" /* * The hz hardware interval timer. * We update the events relating to real time. * Also gather statistics. * * reprime clock * implement callouts * maintain user/system times * maintain date * profile */ /*ARGSUSED*/ hardclock(dev,sp,r1,ov,nps,r0,pc,ps) dev_t dev; caddr_t sp, pc; int r1, ov, nps, r0, ps; { register struct callout *p1; register struct proc *p; register int needsoft = 0; mapinfo map; savemap(map); /* ensure normal mapping of kernel data */ /* * Update real-time timeout queue. * At front of queue are some number of events which are ``due''. * The time to these is <= 0 and if negative represents the * number of ticks which have passed since it was supposed to happen. * The rest of the q elements (times > 0) are events yet to happen, * where the time for each is given as a delta from the previous. * Decrementing just the first of these serves to decrement the time * to all events. */ p1 = calltodo.c_next; while (p1) { if (--p1->c_time > 0) break; needsoft = 1; if (p1->c_time == 0) break; p1 = p1->c_next; } /* * Charge the time out based on the mode the cpu is in. * Here again we fudge for the lack of proper interval timers * assuming that the current state has been around at least * one tick. */ if (USERMODE(ps)) { if (u.u_prof.pr_scale) needsoft = 1; /* * CPU was in user state. Increment * user time counter, and process process-virtual time * interval timer. */ u.u_ru.ru_utime++; if (u.u_timer[ITIMER_VIRTUAL - 1].it_value && !--u.u_timer[ITIMER_VIRTUAL - 1].it_value) { psignal(u.u_procp, SIGVTALRM); u.u_timer[ITIMER_VIRTUAL - 1].it_value = u.u_timer[ITIMER_VIRTUAL - 1].it_interval; } } else { /* * CPU was in system state. */ if (!noproc) u.u_ru.ru_stime++; } /* * If the cpu is currently scheduled to a process, then * charge it with resource utilization for a tick, updating * statistics which run in (user+system) virtual time, * such as the cpu time limit and profiling timers. * This assumes that the current process has been running * the entire last tick. */ if (noproc == 0) { p = u.u_procp; if (++p->p_cpu == 0) p->p_cpu--; if ((u.u_ru.ru_utime+u.u_ru.ru_stime+1) > u.u_rlimit[RLIMIT_CPU].rlim_cur) { psignal(p, SIGXCPU); if (u.u_rlimit[RLIMIT_CPU].rlim_cur < u.u_rlimit[RLIMIT_CPU].rlim_max) u.u_rlimit[RLIMIT_CPU].rlim_cur += 5 * hz; } if (u.u_timer[ITIMER_PROF - 1].it_value && !--u.u_timer[ITIMER_PROF - 1].it_value) { psignal(p, SIGPROF); u.u_timer[ITIMER_PROF - 1].it_value = u.u_timer[ITIMER_PROF - 1].it_interval; } } #ifdef UCB_METER gatherstats(pc,ps); #endif /* * Increment the time-of-day, process callouts at a very * low cpu priority, so we don't keep the relatively high * clock interrupt priority any longer than necessary. */ if (adjdelta) if (adjdelta > 0) { ++lbolt; --adjdelta; } else { --lbolt; ++adjdelta; } if (++lbolt >= hz) { lbolt -= hz; ++time.tv_sec; } if (needsoft && BASEPRI(ps)) { /* if ps is high, just return */ (void) _splsoftclock(); softclock(pc,ps); } restormap(map); } #ifdef UCB_METER int dk_ndrive = DK_NDRIVE; /* * Gather statistics on resource utilization. * * We make a gross assumption: that the system has been in the * state it is in (user state, kernel state, interrupt state, * or idle state) for the entire last time interval, and * update statistics accordingly. */ /*ARGSUSED*/ gatherstats(pc, ps) caddr_t pc; int ps; { register int cpstate, s; /* * Determine what state the cpu is in. */ if (USERMODE(ps)) { /* * CPU was in user state. */ if (u.u_procp->p_nice > NZERO) cpstate = CP_NICE; else cpstate = CP_USER; } else { /* * CPU was in system state. If profiling kernel * increment a counter. If no process is running * then this is a system tick if we were running * at a non-zero IPL (in a driver). If a process is running, * then we charge it with system time even if we were * at a non-zero IPL, since the system often runs * this way during processing of system calls. * This is approximate, but the lack of true interval * timers makes doing anything else difficult. */ cpstate = CP_SYS; if (noproc && BASEPRI(ps)) cpstate = CP_IDLE; } /* * We maintain statistics shown by user-level statistics * programs: the amount of time in each cpu state, and * the amount of time each of DK_NDRIVE ``drives'' is busy. */ cp_time[cpstate]++; for (s = 0; s < DK_NDRIVE; s++) if (dk_busy & (1 << s)) dk_time[s]++; } #endif UCB_METER /* * Software priority level clock interrupt. * Run periodic events from timeout queue. */ softclock(pc, ps) caddr_t pc; int ps; { for (;;) { register struct callout *p1; register caddr_t arg; register int (*func)(); register int a, s; s = splhigh(); if ((p1 = calltodo.c_next) == 0 || p1->c_time > 0) { splx(s); break; } arg = p1->c_arg; func = p1->c_func; a = p1->c_time; calltodo.c_next = p1->c_next; p1->c_next = callfree; callfree = p1; splx(s); #ifdef INET if (ISSUPERADD(func)) KScall(KERNELADD(func), sizeof(arg) + sizeof(a), arg, a); else #endif (*func)(arg, a); } /* * If trapped user-mode and profiling, give it * a profiling tick. */ if (USERMODE(ps)) { register struct proc *p = u.u_procp; if (u.u_prof.pr_scale) addupc(pc, &u.u_prof, 1); /* * Check to see if process has accumulated * more than 10 minutes of user time. If so * reduce priority to give others a chance. */ if (p->p_uid && p->p_nice == NZERO && u.u_ru.ru_utime > 10L * 60L * hz) { p->p_nice = NZERO+4; (void) setpri(p); } } } /* * Arrange that (*fun)(arg) is called in t/hz seconds. */ timeout(fun, arg, t) int (*fun)(); caddr_t arg; register int t; { register struct callout *p1, *p2, *pnew; register int s = splclock(); if (t <= 0) t = 1; pnew = callfree; if (pnew == NULL) panic("timeout table overflow"); callfree = pnew->c_next; pnew->c_arg = arg; pnew->c_func = fun; for (p1 = &calltodo; (p2 = p1->c_next) && p2->c_time < t; p1 = p2) if (p2->c_time > 0) t -= p2->c_time; p1->c_next = pnew; pnew->c_next = p2; pnew->c_time = t; if (p2) p2->c_time -= t; splx(s); } /* * untimeout is called to remove a function timeout call * from the callout structure. */ untimeout(fun, arg) int (*fun)(); caddr_t arg; { register struct callout *p1, *p2; register int s; s = splclock(); for (p1 = &calltodo; (p2 = p1->c_next) != 0; p1 = p2) { if (p2->c_func == fun && p2->c_arg == arg) { if (p2->c_next && p2->c_time > 0) p2->c_next->c_time += p2->c_time; p1->c_next = p2->c_next; p2->c_next = callfree; callfree = p2; break; } } splx(s); } profil() { register struct a { short *bufbase; unsigned bufsize; unsigned pcoffset; unsigned pcscale; } *uap = (struct a *)u.u_ap; register struct uprof *upp = &u.u_prof; upp->pr_base = uap->bufbase; upp->pr_size = uap->bufsize; upp->pr_off = uap->pcoffset; upp->pr_scale = uap->pcscale; } /* * Compute number of hz until specified time. * Used to compute third argument to timeout() from an * absolute time. */ hzto(tv) register struct timeval *tv; { register long ticks; register long sec; register int s = splhigh(); /* * If number of milliseconds will fit in 32 bit arithmetic, * then compute number of milliseconds to time and scale to * ticks. Otherwise just compute number of hz in time, rounding * times greater than representible to maximum value. * * Delta times less than 25 days can be computed ``exactly''. * Maximum value for any timeout in 10ms ticks is 250 days. */ sec = tv->tv_sec - time.tv_sec; if (sec <= 0x7fffffff / 1000 - 1000) ticks = ((tv->tv_sec - time.tv_sec) * 1000 + (tv->tv_usec - time.tv_usec) / 1000) / (1000/hz); else if (sec <= 0x7fffffff / hz) ticks = sec * hz; else ticks = 0x7fffffff; splx(s); #ifdef pdp11 /* stored in an "int", so 16-bit max */ if (ticks > 0x7fff) ticks = 0x7fff; #endif return ((int)ticks); }