1: /*
   2:  * Copyright (c) 1985 Regents of the University of California.
   3:  *
   4:  * Use and reproduction of this software are granted  in  accordance  with
   5:  * the terms and conditions specified in  the  Berkeley  Software  License
   6:  * Agreement (in particular, this entails acknowledgement of the programs'
   7:  * source, and inclusion of this notice) with the additional understanding
   8:  * that  all  recipients  should regard themselves as participants  in  an
   9:  * ongoing  research  project and hence should  feel  obligated  to report
  10:  * their  experiences (good or bad) with these elementary function  codes,
  11:  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
  12:  */
  13: 
  14: #ifndef lint
  15: static char sccsid[] = "@(#)atan2.c	1.3 (Berkeley) 8/21/85";
  16: #endif not lint
  17: 
  18: /* ATAN2(Y,X)
  19:  * RETURN ARG (X+iY)
  20:  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
  21:  * CODED IN C BY K.C. NG, 1/8/85;
  22:  * REVISED BY K.C. NG on 2/7/85, 2/13/85, 3/7/85, 3/30/85, 6/29/85.
  23:  *
  24:  * Required system supported functions :
  25:  *	copysign(x,y)
  26:  *	scalb(x,y)
  27:  *	logb(x)
  28:  *
  29:  * Method :
  30:  *	1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
  31:  *	2. Reduce x to positive by (if x and y are unexceptional):
  32:  *		ARG (x+iy) = arctan(y/x)   	   ... if x > 0,
  33:  *		ARG (x+iy) = pi - arctan[y/(-x)]   ... if x < 0,
  34:  *	3. According to the integer k=4t+0.25 truncated , t=y/x, the argument
  35:  *	   is further reduced to one of the following intervals and the
  36:  *	   arctangent of y/x is evaluated by the corresponding formula:
  37:  *
  38:  *         [0,7/16]	   atan(y/x) = t - t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
  39:  *	   [7/16,11/16]    atan(y/x) = atan(1/2) + atan( (y-x/2)/(x+y/2) )
  40:  *	   [11/16.19/16]   atan(y/x) = atan( 1 ) + atan( (y-x)/(x+y) )
  41:  *	   [19/16,39/16]   atan(y/x) = atan(3/2) + atan( (y-1.5x)/(x+1.5y) )
  42:  *	   [39/16,INF]     atan(y/x) = atan(INF) + atan( -x/y )
  43:  *
  44:  * Special cases:
  45:  * Notations: atan2(y,x) == ARG (x+iy) == ARG(x,y).
  46:  *
  47:  *	ARG( NAN , (anything) ) is NaN;
  48:  *	ARG( (anything), NaN ) is NaN;
  49:  *	ARG(+(anything but NaN), +-0) is +-0  ;
  50:  *	ARG(-(anything but NaN), +-0) is +-PI ;
  51:  *	ARG( 0, +-(anything but 0 and NaN) ) is +-PI/2;
  52:  *	ARG( +INF,+-(anything but INF and NaN) ) is +-0 ;
  53:  *	ARG( -INF,+-(anything but INF and NaN) ) is +-PI;
  54:  *	ARG( +INF,+-INF ) is +-PI/4 ;
  55:  *	ARG( -INF,+-INF ) is +-3PI/4;
  56:  *	ARG( (anything but,0,NaN, and INF),+-INF ) is +-PI/2;
  57:  *
  58:  * Accuracy:
  59:  *	atan2(y,x) returns (PI/pi) * the exact ARG (x+iy) nearly rounded,
  60:  *	where
  61:  *
  62:  *	in decimal:
  63:  *		pi = 3.141592653589793 23846264338327 .....
  64:  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
  65:  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
  66:  *
  67:  *	in hexadecimal:
  68:  *		pi = 3.243F6A8885A308D313198A2E....
  69:  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18	error=.276ulps
  70:  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    error=.206ulps
  71:  *
  72:  *	In a test run with 356,000 random argument on [-1,1] * [-1,1] on a
  73:  *	VAX, the maximum observed error was 1.41 ulps (units of the last place)
  74:  *	compared with (PI/pi)*(the exact ARG(x+iy)).
  75:  *
  76:  * Note:
  77:  *	We use machine PI (the true pi rounded) in place of the actual
  78:  *	value of pi for all the trig and inverse trig functions. In general,
  79:  *	if trig is one of sin, cos, tan, then computed trig(y) returns the
  80:  *	exact trig(y*pi/PI) nearly rounded; correspondingly, computed arctrig
  81:  *	returns the exact arctrig(y)*PI/pi nearly rounded. These guarantee the
  82:  *	trig functions have period PI, and trig(arctrig(x)) returns x for
  83:  *	all critical values x.
  84:  *
  85:  * Constants:
  86:  * The hexadecimal values are the intended ones for the following constants.
  87:  * The decimal values may be used, provided that the compiler will convert
  88:  * from decimal to binary accurately enough to produce the hexadecimal values
  89:  * shown.
  90:  */
  91: 
  92: static double
  93: #ifdef VAX  /* VAX D format */
  94: athfhi =  4.6364760900080611433E-1    , /*Hex  2^ -1   *  .ED63382B0DDA7B */
  95: athflo =  1.9338828231967579916E-19   , /*Hex  2^-62   *  .E450059CFE92C0 */
  96: PIo4   =  7.8539816339744830676E-1    , /*Hex  2^  0   *  .C90FDAA22168C2 */
  97: at1fhi =  9.8279372324732906796E-1    , /*Hex  2^  0   *  .FB985E940FB4D9 */
  98: at1flo = -3.5540295636764633916E-18   , /*Hex  2^-57   * -.831EDC34D6EAEA */
  99: PIo2   =  1.5707963267948966135E0     , /*Hex  2^  1   *  .C90FDAA22168C2 */
 100: PI     =  3.1415926535897932270E0     , /*Hex  2^  2   *  .C90FDAA22168C2 */
 101: a1     =  3.3333333333333473730E-1    , /*Hex  2^ -1   *  .AAAAAAAAAAAB75 */
 102: a2     = -2.0000000000017730678E-1    , /*Hex  2^ -2   * -.CCCCCCCCCD946E */
 103: a3     =  1.4285714286694640301E-1    , /*Hex  2^ -2   *  .92492492744262 */
 104: a4     = -1.1111111135032672795E-1    , /*Hex  2^ -3   * -.E38E38EBC66292 */
 105: a5     =  9.0909091380563043783E-2    , /*Hex  2^ -3   *  .BA2E8BB31BD70C */
 106: a6     = -7.6922954286089459397E-2    , /*Hex  2^ -3   * -.9D89C827C37F18 */
 107: a7     =  6.6663180891693915586E-2    , /*Hex  2^ -3   *  .8886B4AE379E58 */
 108: a8     = -5.8772703698290408927E-2    , /*Hex  2^ -4   * -.F0BBA58481A942 */
 109: a9     =  5.2170707402812969804E-2    , /*Hex  2^ -4   *  .D5B0F3A1AB13AB */
 110: a10    = -4.4895863157820361210E-2    , /*Hex  2^ -4   * -.B7E4B97FD1048F */
 111: a11    =  3.3006147437343875094E-2    , /*Hex  2^ -4   *  .8731743CF72D87 */
 112: a12    = -1.4614844866464185439E-2    ; /*Hex  2^ -6   * -.EF731A2F3476D9 */
 113: #else   /* IEEE double */
 114: athfhi =  4.6364760900080609352E-1    , /*Hex  2^ -2   *  1.DAC670561BB4F */
 115: athflo =  4.6249969567426939759E-18   , /*Hex  2^-58   *  1.5543B8F253271 */
 116: PIo4   =  7.8539816339744827900E-1    , /*Hex  2^ -1   *  1.921FB54442D18 */
 117: at1fhi =  9.8279372324732905408E-1    , /*Hex  2^ -1   *  1.F730BD281F69B */
 118: at1flo = -2.4407677060164810007E-17   , /*Hex  2^-56   * -1.C23DFEFEAE6B5 */
 119: PIo2   =  1.5707963267948965580E0     , /*Hex  2^  0   *  1.921FB54442D18 */
 120: PI     =  3.1415926535897931160E0     , /*Hex  2^  1   *  1.921FB54442D18 */
 121: a1     =  3.3333333333333942106E-1    , /*Hex  2^ -2   *  1.55555555555C3 */
 122: a2     = -1.9999999999979536924E-1    , /*Hex  2^ -3   * -1.9999999997CCD */
 123: a3     =  1.4285714278004377209E-1    , /*Hex  2^ -3   *  1.24924921EC1D7 */
 124: a4     = -1.1111110579344973814E-1    , /*Hex  2^ -4   * -1.C71C7059AF280 */
 125: a5     =  9.0908906105474668324E-2    , /*Hex  2^ -4   *  1.745CE5AA35DB2 */
 126: a6     = -7.6919217767468239799E-2    , /*Hex  2^ -4   * -1.3B0FA54BEC400 */
 127: a7     =  6.6614695906082474486E-2    , /*Hex  2^ -4   *  1.10DA924597FFF */
 128: a8     = -5.8358371008508623523E-2    , /*Hex  2^ -5   * -1.DE125FDDBD793 */
 129: a9     =  4.9850617156082015213E-2    , /*Hex  2^ -5   *  1.9860524BDD807 */
 130: a10    = -3.6700606902093604877E-2    , /*Hex  2^ -5   * -1.2CA6C04C6937A */
 131: a11    =  1.6438029044759730479E-2    ; /*Hex  2^ -6   *  1.0D52174A1BB54 */
 132: #endif
 133: 
 134: double atan2(y,x)
 135: double  y,x;
 136: {
 137:     static double zero=0, one=1, small=1.0E-9, big=1.0E18;
 138:     double copysign(),logb(),scalb(),t,z,signy,signx,hi,lo;
 139:     int finite(), k,m;
 140: 
 141:     /* if x or y is NAN */
 142:     if(x!=x) return(x); if(y!=y) return(y);
 143: 
 144:     /* copy down the sign of y and x */
 145:     signy = copysign(one,y) ;
 146:     signx = copysign(one,x) ;
 147: 
 148:     /* if x is 1.0, goto begin */
 149:     if(x==1) { y=copysign(y,one); t=y; if(finite(t)) goto begin;}
 150: 
 151:     /* when y = 0 */
 152:     if(y==zero) return((signx==one)?y:copysign(PI,signy));
 153: 
 154:     /* when x = 0 */
 155:     if(x==zero) return(copysign(PIo2,signy));
 156: 
 157:     /* when x is INF */
 158:     if(!finite(x))
 159:         if(!finite(y))
 160:         return(copysign((signx==one)?PIo4:3*PIo4,signy));
 161:         else
 162:         return(copysign((signx==one)?zero:PI,signy));
 163: 
 164:     /* when y is INF */
 165:     if(!finite(y)) return(copysign(PIo2,signy));
 166: 
 167: 
 168:     /* compute y/x */
 169:     x=copysign(x,one);
 170:     y=copysign(y,one);
 171:     if((m=(k=logb(y))-logb(x)) > 60) t=big+big;
 172:         else if(m < -80 ) t=y/x;
 173:         else { t = y/x ; y = scalb(y,-k); x=scalb(x,-k); }
 174: 
 175:     /* begin argument reduction */
 176: begin:
 177:     if (t < 2.4375) {
 178: 
 179:     /* truncate 4(t+1/16) to integer for branching */
 180:         k = 4 * (t+0.0625);
 181:         switch (k) {
 182: 
 183:         /* t is in [0,7/16] */
 184:         case 0:
 185:         case 1:
 186:         if (t < small)
 187:             { big + small ;  /* raise inexact flag */
 188:               return (copysign((signx>zero)?t:PI-t,signy)); }
 189: 
 190:         hi = zero;  lo = zero;  break;
 191: 
 192:         /* t is in [7/16,11/16] */
 193:         case 2:
 194:         hi = athfhi; lo = athflo;
 195:         z = x+x;
 196:         t = ( (y+y) - x ) / ( z +  y ); break;
 197: 
 198:         /* t is in [11/16,19/16] */
 199:         case 3:
 200:         case 4:
 201:         hi = PIo4; lo = zero;
 202:         t = ( y - x ) / ( x + y ); break;
 203: 
 204:         /* t is in [19/16,39/16] */
 205:         default:
 206:         hi = at1fhi; lo = at1flo;
 207:         z = y-x; y=y+y+y; t = x+x;
 208:         t = ( (z+z)-x ) / ( t + y ); break;
 209:         }
 210:     }
 211:     /* end of if (t < 2.4375) */
 212: 
 213:     else
 214:     {
 215:         hi = PIo2; lo = zero;
 216: 
 217:         /* t is in [2.4375, big] */
 218:         if (t <= big)  t = - x / y;
 219: 
 220:         /* t is in [big, INF] */
 221:         else
 222:           { big+small;  /* raise inexact flag */
 223:         t = zero; }
 224:     }
 225:     /* end of argument reduction */
 226: 
 227:     /* compute atan(t) for t in [-.4375, .4375] */
 228:     z = t*t;
 229: #ifdef VAX
 230:     z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+
 231:             z*(a9+z*(a10+z*(a11+z*a12))))))))))));
 232: #else   /* IEEE double */
 233:     z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+
 234:             z*(a9+z*(a10+z*a11)))))))))));
 235: #endif
 236:     z = lo - z; z += t; z += hi;
 237: 
 238:     return(copysign((signx>zero)?z:PI-z,signy));
 239: }

Defined functions

atan2 defined in line 134; never used

Defined variables

athfhi defined in line 94; used 2 times
sccsid defined in line 15; never used
Last modified: 1985-08-21
Generated: 2016-12-26
Generated by src2html V0.67
page hit count: 960
Valid CSS Valid XHTML 1.0 Strict