1: /* 2: * This program implements the 3: * Proposed Federal Information Processing 4: * Data Encryption Standard. 5: * See Federal Register, March 17, 1975 (40FR12134) 6: */ 7: 8: /* 9: * Initial permutation, 10: */ 11: static char IP[] = { 12: 58,50,42,34,26,18,10, 2, 13: 60,52,44,36,28,20,12, 4, 14: 62,54,46,38,30,22,14, 6, 15: 64,56,48,40,32,24,16, 8, 16: 57,49,41,33,25,17, 9, 1, 17: 59,51,43,35,27,19,11, 3, 18: 61,53,45,37,29,21,13, 5, 19: 63,55,47,39,31,23,15, 7, 20: }; 21: 22: /* 23: * Final permutation, FP = IP^(-1) 24: */ 25: static char FP[] = { 26: 40, 8,48,16,56,24,64,32, 27: 39, 7,47,15,55,23,63,31, 28: 38, 6,46,14,54,22,62,30, 29: 37, 5,45,13,53,21,61,29, 30: 36, 4,44,12,52,20,60,28, 31: 35, 3,43,11,51,19,59,27, 32: 34, 2,42,10,50,18,58,26, 33: 33, 1,41, 9,49,17,57,25, 34: }; 35: 36: /* 37: * Permuted-choice 1 from the key bits 38: * to yield C and D. 39: * Note that bits 8,16... are left out: 40: * They are intended for a parity check. 41: */ 42: static char PC1_C[] = { 43: 57,49,41,33,25,17, 9, 44: 1,58,50,42,34,26,18, 45: 10, 2,59,51,43,35,27, 46: 19,11, 3,60,52,44,36, 47: }; 48: 49: static char PC1_D[] { 50: 63,55,47,39,31,23,15, 51: 7,62,54,46,38,30,22, 52: 14, 6,61,53,45,37,29, 53: 21,13, 5,28,20,12, 4, 54: }; 55: 56: /* 57: * Sequence of shifts used for the key schedule. 58: */ 59: static char shifts[] = { 60: 1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1, 61: }; 62: 63: /* 64: * Permuted-choice 2, to pick out the bits from 65: * the CD array that generate the key schedule. 66: */ 67: static char PC2_C[] = { 68: 14,17,11,24, 1, 5, 69: 3,28,15, 6,21,10, 70: 23,19,12, 4,26, 8, 71: 16, 7,27,20,13, 2, 72: }; 73: 74: static char PC2_D[] = { 75: 41,52,31,37,47,55, 76: 30,40,51,45,33,48, 77: 44,49,39,56,34,53, 78: 46,42,50,36,29,32, 79: }; 80: 81: /* 82: * The C and D arrays used to calculate the key schedule. 83: */ 84: 85: static char C[28]; 86: static char D[28]; 87: /* 88: * The key schedule. 89: * Generated from the key. 90: */ 91: static char KS[16][48]; 92: 93: /* 94: * Set up the key schedule from the key. 95: */ 96: 97: setkey(key) 98: char *key; 99: { 100: register i, j, k; 101: int t; 102: 103: /* 104: * First, generate C and D by permuting 105: * the key. The low order bit of each 106: * 8-bit char is not used, so C and D are only 28 107: * bits apiece. 108: */ 109: for (i=0; i<28; i++) { 110: C[i] = key[PC1_C[i]-1]; 111: D[i] = key[PC1_D[i]-1]; 112: } 113: /* 114: * To generate Ki, rotate C and D according 115: * to schedule and pick up a permutation 116: * using PC2. 117: */ 118: for (i=0; i<16; i++) { 119: /* 120: * rotate. 121: */ 122: for (k=0; k<shifts[i]; k++) { 123: t = C[0]; 124: for (j=0; j<28-1; j++) 125: C[j] = C[j+1]; 126: C[27] = t; 127: t = D[0]; 128: for (j=0; j<28-1; j++) 129: D[j] = D[j+1]; 130: D[27] = t; 131: } 132: /* 133: * get Ki. Note C and D are concatenated. 134: */ 135: for (j=0; j<24; j++) { 136: KS[i][j] = C[PC2_C[j]-1]; 137: KS[i][j+24] = D[PC2_D[j]-28-1]; 138: } 139: } 140: } 141: 142: /* 143: * The E bit-selection table. 144: */ 145: static char E[48]; 146: static char e[] { 147: 32, 1, 2, 3, 4, 5, 148: 4, 5, 6, 7, 8, 9, 149: 8, 9,10,11,12,13, 150: 12,13,14,15,16,17, 151: 16,17,18,19,20,21, 152: 20,21,22,23,24,25, 153: 24,25,26,27,28,29, 154: 28,29,30,31,32, 1, 155: }; 156: 157: /* 158: * The 8 selection functions. 159: * For some reason, they give a 0-origin 160: * index, unlike everything else. 161: */ 162: static char S[8][64] { 163: 14, 4,13, 1, 2,15,11, 8, 3,10, 6,12, 5, 9, 0, 7, 164: 0,15, 7, 4,14, 2,13, 1,10, 6,12,11, 9, 5, 3, 8, 165: 4, 1,14, 8,13, 6, 2,11,15,12, 9, 7, 3,10, 5, 0, 166: 15,12, 8, 2, 4, 9, 1, 7, 5,11, 3,14,10, 0, 6,13, 167: 168: 15, 1, 8,14, 6,11, 3, 4, 9, 7, 2,13,12, 0, 5,10, 169: 3,13, 4, 7,15, 2, 8,14,12, 0, 1,10, 6, 9,11, 5, 170: 0,14, 7,11,10, 4,13, 1, 5, 8,12, 6, 9, 3, 2,15, 171: 13, 8,10, 1, 3,15, 4, 2,11, 6, 7,12, 0, 5,14, 9, 172: 173: 10, 0, 9,14, 6, 3,15, 5, 1,13,12, 7,11, 4, 2, 8, 174: 13, 7, 0, 9, 3, 4, 6,10, 2, 8, 5,14,12,11,15, 1, 175: 13, 6, 4, 9, 8,15, 3, 0,11, 1, 2,12, 5,10,14, 7, 176: 1,10,13, 0, 6, 9, 8, 7, 4,15,14, 3,11, 5, 2,12, 177: 178: 7,13,14, 3, 0, 6, 9,10, 1, 2, 8, 5,11,12, 4,15, 179: 13, 8,11, 5, 6,15, 0, 3, 4, 7, 2,12, 1,10,14, 9, 180: 10, 6, 9, 0,12,11, 7,13,15, 1, 3,14, 5, 2, 8, 4, 181: 3,15, 0, 6,10, 1,13, 8, 9, 4, 5,11,12, 7, 2,14, 182: 183: 2,12, 4, 1, 7,10,11, 6, 8, 5, 3,15,13, 0,14, 9, 184: 14,11, 2,12, 4, 7,13, 1, 5, 0,15,10, 3, 9, 8, 6, 185: 4, 2, 1,11,10,13, 7, 8,15, 9,12, 5, 6, 3, 0,14, 186: 11, 8,12, 7, 1,14, 2,13, 6,15, 0, 9,10, 4, 5, 3, 187: 188: 12, 1,10,15, 9, 2, 6, 8, 0,13, 3, 4,14, 7, 5,11, 189: 10,15, 4, 2, 7,12, 9, 5, 6, 1,13,14, 0,11, 3, 8, 190: 9,14,15, 5, 2, 8,12, 3, 7, 0, 4,10, 1,13,11, 6, 191: 4, 3, 2,12, 9, 5,15,10,11,14, 1, 7, 6, 0, 8,13, 192: 193: 4,11, 2,14,15, 0, 8,13, 3,12, 9, 7, 5,10, 6, 1, 194: 13, 0,11, 7, 4, 9, 1,10,14, 3, 5,12, 2,15, 8, 6, 195: 1, 4,11,13,12, 3, 7,14,10,15, 6, 8, 0, 5, 9, 2, 196: 6,11,13, 8, 1, 4,10, 7, 9, 5, 0,15,14, 2, 3,12, 197: 198: 13, 2, 8, 4, 6,15,11, 1,10, 9, 3,14, 5, 0,12, 7, 199: 1,15,13, 8,10, 3, 7, 4,12, 5, 6,11, 0,14, 9, 2, 200: 7,11, 4, 1, 9,12,14, 2, 0, 6,10,13,15, 3, 5, 8, 201: 2, 1,14, 7, 4,10, 8,13,15,12, 9, 0, 3, 5, 6,11, 202: }; 203: 204: /* 205: * P is a permutation on the selected combination 206: * of the current L and key. 207: */ 208: static char P[] { 209: 16, 7,20,21, 210: 29,12,28,17, 211: 1,15,23,26, 212: 5,18,31,10, 213: 2, 8,24,14, 214: 32,27, 3, 9, 215: 19,13,30, 6, 216: 22,11, 4,25, 217: }; 218: 219: /* 220: * The current block, divided into 2 halves. 221: */ 222: static char L[32], R[32]; 223: static char tempL[32]; 224: static char f[32]; 225: 226: /* 227: * The combination of the key and the input, before selection. 228: */ 229: static char preS[48]; 230: 231: /* 232: * The payoff: encrypt a block. 233: */ 234: 235: encrypt(block, edflag) 236: char *block; 237: { 238: int i, ii; 239: register t, j, k; 240: 241: /* 242: * First, permute the bits in the input 243: */ 244: for (j=0; j<64; j++) 245: L[j] = block[IP[j]-1]; 246: /* 247: * Perform an encryption operation 16 times. 248: */ 249: for (ii=0; ii<16; ii++) { 250: /* 251: * Set direction 252: */ 253: if (edflag) 254: i = 15-ii; 255: else 256: i = ii; 257: /* 258: * Save the R array, 259: * which will be the new L. 260: */ 261: for (j=0; j<32; j++) 262: tempL[j] = R[j]; 263: /* 264: * Expand R to 48 bits using the E selector; 265: * exclusive-or with the current key bits. 266: */ 267: for (j=0; j<48; j++) 268: preS[j] = R[E[j]-1] ^ KS[i][j]; 269: /* 270: * The pre-select bits are now considered 271: * in 8 groups of 6 bits each. 272: * The 8 selection functions map these 273: * 6-bit quantities into 4-bit quantities 274: * and the results permuted 275: * to make an f(R, K). 276: * The indexing into the selection functions 277: * is peculiar; it could be simplified by 278: * rewriting the tables. 279: */ 280: for (j=0; j<8; j++) { 281: t = 6*j; 282: k = S[j][(preS[t+0]<<5)+ 283: (preS[t+1]<<3)+ 284: (preS[t+2]<<2)+ 285: (preS[t+3]<<1)+ 286: (preS[t+4]<<0)+ 287: (preS[t+5]<<4)]; 288: t = 4*j; 289: f[t+0] = (k>>3)&01; 290: f[t+1] = (k>>2)&01; 291: f[t+2] = (k>>1)&01; 292: f[t+3] = (k>>0)&01; 293: } 294: /* 295: * The new R is L ^ f(R, K). 296: * The f here has to be permuted first, though. 297: */ 298: for (j=0; j<32; j++) 299: R[j] = L[j] ^ f[P[j]-1]; 300: /* 301: * Finally, the new L (the original R) 302: * is copied back. 303: */ 304: for (j=0; j<32; j++) 305: L[j] = tempL[j]; 306: } 307: /* 308: * The output L and R are reversed. 309: */ 310: for (j=0; j<32; j++) { 311: t = L[j]; 312: L[j] = R[j]; 313: R[j] = t; 314: } 315: /* 316: * The final output 317: * gets the inverse permutation of the very original. 318: */ 319: for (j=0; j<64; j++) 320: block[j] = L[FP[j]-1]; 321: } 322: 323: char * 324: crypt(pw,salt) 325: char *pw; 326: char *salt; 327: { 328: register i, j, c; 329: int temp; 330: static char block[66], iobuf[16]; 331: for(i=0; i<66; i++) 332: block[i] = 0; 333: for(i=0; (c= *pw) && i<64; pw++){ 334: for(j=0; j<7; j++, i++) 335: block[i] = (c>>(6-j)) & 01; 336: i++; 337: } 338: 339: setkey(block); 340: 341: for(i=0; i<66; i++) 342: block[i] = 0; 343: 344: for(i=0;i<48;i++) 345: E[i] = e[i]; 346: 347: for(i=0;i<2;i++){ 348: c = *salt++; 349: iobuf[i] = c; 350: if(c>'Z') c -= 6; 351: if(c>'9') c -= 7; 352: c -= '.'; 353: for(j=0;j<6;j++){ 354: if((c>>j) & 01){ 355: temp = E[6*i+j]; 356: E[6*i+j] = E[6*i+j+24]; 357: E[6*i+j+24] = temp; 358: } 359: } 360: } 361: 362: for(i=0; i<25; i++) 363: encrypt(block,0); 364: 365: for(i=0; i<11; i++){ 366: c = 0; 367: for(j=0; j<6; j++){ 368: c <<= 1; 369: c |= block[6*i+j]; 370: } 371: c += '.'; 372: if(c>'9') c += 7; 373: if(c>'Z') c += 6; 374: iobuf[i+2] = c; 375: } 376: iobuf[i+2] = 0; 377: if(iobuf[1]==0) 378: iobuf[1] = iobuf[0]; 379: return(iobuf); 380: }