1: /*
2: * Copyright (c) 1985 Regents of the University of California.
3: *
4: * Use and reproduction of this software are granted in accordance with
5: * the terms and conditions specified in the Berkeley Software License
6: * Agreement (in particular, this entails acknowledgement of the programs'
7: * source, and inclusion of this notice) with the additional understanding
8: * that all recipients should regard themselves as participants in an
9: * ongoing research project and hence should feel obligated to report
10: * their experiences (good or bad) with these elementary function codes,
11: * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12: */
13:
14: #ifndef lint
15: static char sccsid[] = "@(#)acosh.c 1.2 (Berkeley) 8/21/85";
16: #endif not lint
17:
18: /* ACOSH(X)
19: * RETURN THE INVERSE HYPERBOLIC COSINE OF X
20: * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
21: * CODED IN C BY K.C. NG, 2/16/85;
22: * REVISED BY K.C. NG on 3/6/85, 3/24/85, 4/16/85, 8/17/85.
23: *
24: * Required system supported functions :
25: * sqrt(x)
26: *
27: * Required kernel function:
28: * log1p(x) ...return log(1+x)
29: *
30: * Method :
31: * Based on
32: * acosh(x) = log [ x + sqrt(x*x-1) ]
33: * we have
34: * acosh(x) := log1p(x)+ln2, if (x > 1.0E20); else
35: * acosh(x) := log1p( sqrt(x-1) * (sqrt(x-1) + sqrt(x+1)) ) .
36: * These formulae avoid the over/underflow complication.
37: *
38: * Special cases:
39: * acosh(x) is NaN with signal if x<1.
40: * acosh(NaN) is NaN without signal.
41: *
42: * Accuracy:
43: * acosh(x) returns the exact inverse hyperbolic cosine of x nearly
44: * rounded. In a test run with 512,000 random arguments on a VAX, the
45: * maximum observed error was 3.30 ulps (units of the last place) at
46: * x=1.0070493753568216 .
47: *
48: * Constants:
49: * The hexadecimal values are the intended ones for the following constants.
50: * The decimal values may be used, provided that the compiler will convert
51: * from decimal to binary accurately enough to produce the hexadecimal values
52: * shown.
53: */
54:
55: #ifdef VAX /* VAX D format */
56: /* static double */
57: /* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */
58: /* ln2lo = 1.6465949582897081279E-12 ; Hex 2^-39 * .E7BCD5E4F1D9CC */
59: static long ln2hix[] = { 0x72174031, 0x0000f7d0};
60: static long ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1};
61: #define ln2hi (*(double*)ln2hix)
62: #define ln2lo (*(double*)ln2lox)
63: #else /* IEEE double */
64: static double
65: ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */
66: ln2lo = 1.9082149292705877000E-10 ; /*Hex 2^-33 * 1.A39EF35793C76 */
67: #endif
68:
69: double acosh(x)
70: double x;
71: {
72: double log1p(),sqrt(),t,big=1.E20; /* big+1==big */
73:
74: #ifndef VAX
75: if(x!=x) return(x); /* x is NaN */
76: #endif
77:
78: /* return log1p(x) + log(2) if x is large */
79: if(x>big) {t=log1p(x)+ln2lo; return(t+ln2hi);}
80:
81: t=sqrt(x-1.0);
82: return(log1p(t*(t+sqrt(x+1.0))));
83: }
Defined functions
acosh
defined in line
69; used 2 times
Defined variables
ln2hi
defined in line
65;
never used
Defined macros
ln2hi
defined in line
61; used 1 times
ln2lo
defined in line
62; used 2 times