1: /* 2: * Copyright (c) 1985 Regents of the University of California. 3: * 4: * Use and reproduction of this software are granted in accordance with 5: * the terms and conditions specified in the Berkeley Software License 6: * Agreement (in particular, this entails acknowledgement of the programs' 7: * source, and inclusion of this notice) with the additional understanding 8: * that all recipients should regard themselves as participants in an 9: * ongoing research project and hence should feel obligated to report 10: * their experiences (good or bad) with these elementary function codes, 11: * using "sendbug 4bsd-bugs@BERKELEY", to the authors. 12: */ 13: 14: #ifndef lint 15: static char sccsid[] = "@(#)log1p.c 1.3 (Berkeley) 8/21/85"; 16: #endif not lint 17: 18: /* LOG1P(x) 19: * RETURN THE LOGARITHM OF 1+x 20: * DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS) 21: * CODED IN C BY K.C. NG, 1/19/85; 22: * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85. 23: * 24: * Required system supported functions: 25: * scalb(x,n) 26: * copysign(x,y) 27: * logb(x) 28: * finite(x) 29: * 30: * Required kernel function: 31: * log__L(z) 32: * 33: * Method : 34: * 1. Argument Reduction: find k and f such that 35: * 1+x = 2^k * (1+f), 36: * where sqrt(2)/2 < 1+f < sqrt(2) . 37: * 38: * 2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) 39: * = 2s + 2/3 s**3 + 2/5 s**5 + ....., 40: * log(1+f) is computed by 41: * 42: * log(1+f) = 2s + s*log__L(s*s) 43: * where 44: * log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...))) 45: * 46: * See log__L() for the values of the coefficients. 47: * 48: * 3. Finally, log(1+x) = k*ln2 + log(1+f). 49: * 50: * Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers 51: * n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last 52: * 20 bits (for VAX D format), or the last 21 bits ( for IEEE 53: * double) is 0. This ensures n*ln2hi is exactly representable. 54: * 2. In step 1, f may not be representable. A correction term c 55: * for f is computed. It follows that the correction term for 56: * f - t (the leading term of log(1+f) in step 2) is c-c*x. We 57: * add this correction term to n*ln2lo to attenuate the error. 58: * 59: * 60: * Special cases: 61: * log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal; 62: * log1p(INF) is +INF; log1p(-1) is -INF with signal; 63: * only log1p(0)=0 is exact for finite argument. 64: * 65: * Accuracy: 66: * log1p(x) returns the exact log(1+x) nearly rounded. In a test run 67: * with 1,536,000 random arguments on a VAX, the maximum observed 68: * error was .846 ulps (units in the last place). 69: * 70: * Constants: 71: * The hexadecimal values are the intended ones for the following constants. 72: * The decimal values may be used, provided that the compiler will convert 73: * from decimal to binary accurately enough to produce the hexadecimal values 74: * shown. 75: */ 76: 77: #ifdef VAX /* VAX D format */ 78: #include <errno.h> 79: 80: /* double static */ 81: /* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */ 82: /* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */ 83: /* sqrt2 = 1.4142135623730950622E0 ; Hex 2^ 1 * .B504F333F9DE65 */ 84: static long ln2hix[] = { 0x72174031, 0x0000f7d0}; 85: static long ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1}; 86: static long sqrt2x[] = { 0x04f340b5, 0xde6533f9}; 87: #define ln2hi (*(double*)ln2hix) 88: #define ln2lo (*(double*)ln2lox) 89: #define sqrt2 (*(double*)sqrt2x) 90: #else /* IEEE double */ 91: double static 92: ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */ 93: ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */ 94: sqrt2 = 1.4142135623730951455E0 ; /*Hex 2^ 0 * 1.6A09E667F3BCD */ 95: #endif 96: 97: double log1p(x) 98: double x; 99: { 100: static double zero=0.0, negone= -1.0, one=1.0, 101: half=1.0/2.0, small=1.0E-20; /* 1+small == 1 */ 102: double logb(),copysign(),scalb(),log__L(),z,s,t,c; 103: int k,finite(); 104: 105: #ifndef VAX 106: if(x!=x) return(x); /* x is NaN */ 107: #endif 108: 109: if(finite(x)) { 110: if( x > negone ) { 111: 112: /* argument reduction */ 113: if(copysign(x,one)<small) return(x); 114: k=logb(one+x); z=scalb(x,-k); t=scalb(one,-k); 115: if(z+t >= sqrt2 ) 116: { k += 1 ; z *= half; t *= half; } 117: t += negone; x = z + t; 118: c = (t-x)+z ; /* correction term for x */ 119: 120: /* compute log(1+x) */ 121: s = x/(2+x); t = x*x*half; 122: c += (k*ln2lo-c*x); 123: z = c+s*(t+log__L(s*s)); 124: x += (z - t) ; 125: 126: return(k*ln2hi+x); 127: } 128: /* end of if (x > negone) */ 129: 130: else { 131: #ifdef VAX 132: extern double infnan(); 133: if ( x == negone ) 134: return (infnan(-ERANGE)); /* -INF */ 135: else 136: return (infnan(EDOM)); /* NaN */ 137: #else /* IEEE double */ 138: /* x = -1, return -INF with signal */ 139: if ( x == negone ) return( negone/zero ); 140: 141: /* negative argument for log, return NaN with signal */ 142: else return ( zero / zero ); 143: #endif 144: } 145: } 146: /* end of if (finite(x)) */ 147: 148: /* log(-INF) is NaN */ 149: else if(x<0) 150: return(zero/zero); 151: 152: /* log(+INF) is INF */ 153: else return(x); 154: }