1: /* @(#)erf.c 4.2 (Berkeley) 8/21/85 */
2:
3: /*
4: C program for floating point error function
5:
6: erf(x) returns the error function of its argument
7: erfc(x) returns 1.0-erf(x)
8:
9: erf(x) is defined by
10: ${2 over sqrt(pi)} int from 0 to x e sup {-t sup 2} dt$
11:
12: the entry for erfc is provided because of the
13: extreme loss of relative accuracy if erf(x) is
14: called for large x and the result subtracted
15: from 1. (e.g. for x= 10, 12 places are lost).
16:
17: There are no error returns.
18:
19: Calls exp.
20:
21: Coefficients for large x are #5667 from Hart & Cheney (18.72D).
22: */
23:
24: #define M 7
25: #define N 9
26: static double torp = 1.1283791670955125738961589031;
27: static double p1[] = {
28: 0.804373630960840172832162e5,
29: 0.740407142710151470082064e4,
30: 0.301782788536507577809226e4,
31: 0.380140318123903008244444e2,
32: 0.143383842191748205576712e2,
33: -.288805137207594084924010e0,
34: 0.007547728033418631287834e0,
35: };
36: static double q1[] = {
37: 0.804373630960840172826266e5,
38: 0.342165257924628539769006e5,
39: 0.637960017324428279487120e4,
40: 0.658070155459240506326937e3,
41: 0.380190713951939403753468e2,
42: 0.100000000000000000000000e1,
43: 0.0,
44: };
45: static double p2[] = {
46: 0.18263348842295112592168999e4,
47: 0.28980293292167655611275846e4,
48: 0.2320439590251635247384768711e4,
49: 0.1143262070703886173606073338e4,
50: 0.3685196154710010637133875746e3,
51: 0.7708161730368428609781633646e2,
52: 0.9675807882987265400604202961e1,
53: 0.5641877825507397413087057563e0,
54: 0.0,
55: };
56: static double q2[] = {
57: 0.18263348842295112595576438e4,
58: 0.495882756472114071495438422e4,
59: 0.60895424232724435504633068e4,
60: 0.4429612803883682726711528526e4,
61: 0.2094384367789539593790281779e4,
62: 0.6617361207107653469211984771e3,
63: 0.1371255960500622202878443578e3,
64: 0.1714980943627607849376131193e2,
65: 1.0,
66: };
67:
68: double
69: erf(arg) double arg;{
70: double erfc();
71: int sign;
72: double argsq;
73: double d, n;
74: int i;
75:
76: sign = 1;
77: if(arg < 0.){
78: arg = -arg;
79: sign = -1;
80: }
81: if(arg < 0.5){
82: argsq = arg*arg;
83: for(n=0,d=0,i=M-1; i>=0; i--){
84: n = n*argsq + p1[i];
85: d = d*argsq + q1[i];
86: }
87: return(sign*torp*arg*n/d);
88: }
89: if(arg >= 10.)
90: return(sign*1.);
91: return(sign*(1. - erfc(arg)));
92: }
93:
94: double
95: erfc(arg) double arg;{
96: double erf();
97: double exp();
98: double n, d;
99: int i;
100:
101: if(arg < 0.)
102: return(2. - erfc(-arg));
103: /*
104: if(arg < 0.5)
105: return(1. - erf(arg));
106: */
107: if(arg >= 10.)
108: return(0.);
109:
110: for(n=0,d=0,i=N-1; i>=0; i--){
111: n = n*arg + p2[i];
112: d = d*arg + q2[i];
113: }
114: return(exp(-arg*arg)*n/d);
115: }
Defined functions
erf
defined in line
68; used 1 times
erfc
defined in line
94; used 3 times
Defined variables
p1
defined in line
27; used 1 times
p2
defined in line
45; used 1 times
q1
defined in line
36; used 1 times
q2
defined in line
56; used 1 times
torp
defined in line
26; used 1 times
Defined macros
M
defined in line
24; used 1 times
N
defined in line
25; used 1 times