1: /* 2: * Copyright (c) 1985 Regents of the University of California. 3: * 4: * Use and reproduction of this software are granted in accordance with 5: * the terms and conditions specified in the Berkeley Software License 6: * Agreement (in particular, this entails acknowledgement of the programs' 7: * source, and inclusion of this notice) with the additional understanding 8: * that all recipients should regard themselves as participants in an 9: * ongoing research project and hence should feel obligated to report 10: * their experiences (good or bad) with these elementary function codes, 11: * using "sendbug 4bsd-bugs@BERKELEY", to the authors. 12: */ 13: 14: #ifndef lint 15: static char sccsid[] = "@(#)exp.c 4.3 (Berkeley) 8/21/85"; 16: #endif not lint 17: 18: /* EXP(X) 19: * RETURN THE EXPONENTIAL OF X 20: * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS) 21: * CODED IN C BY K.C. NG, 1/19/85; 22: * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85. 23: * 24: * Required system supported functions: 25: * scalb(x,n) 26: * copysign(x,y) 27: * finite(x) 28: * 29: * Kernel function: 30: * exp__E(x,c) 31: * 32: * Method: 33: * 1. Argument Reduction: given the input x, find r and integer k such 34: * that 35: * x = k*ln2 + r, |r| <= 0.5*ln2 . 36: * r will be represented as r := z+c for better accuracy. 37: * 38: * 2. Compute expm1(r)=exp(r)-1 by 39: * 40: * expm1(r=z+c) := z + exp__E(z,r) 41: * 42: * 3. exp(x) = 2^k * ( expm1(r) + 1 ). 43: * 44: * Special cases: 45: * exp(INF) is INF, exp(NaN) is NaN; 46: * exp(-INF)= 0; 47: * for finite argument, only exp(0)=1 is exact. 48: * 49: * Accuracy: 50: * exp(x) returns the exponential of x nearly rounded. In a test run 51: * with 1,156,000 random arguments on a VAX, the maximum observed 52: * error was .768 ulps (units in the last place). 53: * 54: * Constants: 55: * The hexadecimal values are the intended ones for the following constants. 56: * The decimal values may be used, provided that the compiler will convert 57: * from decimal to binary accurately enough to produce the hexadecimal values 58: * shown. 59: */ 60: 61: #ifdef VAX /* VAX D format */ 62: /* double static */ 63: /* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */ 64: /* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */ 65: /* lnhuge = 9.4961163736712506989E1 , Hex 2^ 7 * .BDEC1DA73E9010 */ 66: /* lntiny = -9.5654310917272452386E1 , Hex 2^ 7 * -.BF4F01D72E33AF */ 67: /* invln2 = 1.4426950408889634148E0 ; Hex 2^ 1 * .B8AA3B295C17F1 */ 68: static long ln2hix[] = { 0x72174031, 0x0000f7d0}; 69: static long ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1}; 70: static long lnhugex[] = { 0xec1d43bd, 0x9010a73e}; 71: static long lntinyx[] = { 0x4f01c3bf, 0x33afd72e}; 72: static long invln2x[] = { 0xaa3b40b8, 0x17f1295c}; 73: #define ln2hi (*(double*)ln2hix) 74: #define ln2lo (*(double*)ln2lox) 75: #define lnhuge (*(double*)lnhugex) 76: #define lntiny (*(double*)lntinyx) 77: #define invln2 (*(double*)invln2x) 78: #else /* IEEE double */ 79: double static 80: ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */ 81: ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */ 82: lnhuge = 7.1602103751842355450E2 , /*Hex 2^ 9 * 1.6602B15B7ECF2 */ 83: lntiny = -7.5137154372698068983E2 , /*Hex 2^ 9 * -1.77AF8EBEAE354 */ 84: invln2 = 1.4426950408889633870E0 ; /*Hex 2^ 0 * 1.71547652B82FE */ 85: #endif 86: 87: double exp(x) 88: double x; 89: { 90: double scalb(), copysign(), exp__E(), z,hi,lo,c; 91: int k,finite(); 92: 93: #ifndef VAX 94: if(x!=x) return(x); /* x is NaN */ 95: #endif 96: if( x <= lnhuge ) { 97: if( x >= lntiny ) { 98: 99: /* argument reduction : x --> x - k*ln2 */ 100: 101: k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */ 102: 103: /* express x-k*ln2 as z+c */ 104: hi=x-k*ln2hi; 105: z=hi-(lo=k*ln2lo); 106: c=(hi-z)-lo; 107: 108: /* return 2^k*[expm1(x) + 1] */ 109: z += exp__E(z,c); 110: return (scalb(z+1.0,k)); 111: } 112: /* end of x > lntiny */ 113: 114: else 115: /* exp(-big#) underflows to zero */ 116: if(finite(x)) return(scalb(1.0,-5000)); 117: 118: /* exp(-INF) is zero */ 119: else return(0.0); 120: } 121: /* end of x < lnhuge */ 122: 123: else 124: /* exp(INF) is INF, exp(+big#) overflows to INF */ 125: return( finite(x) ? scalb(1.0,5000) : x); 126: }