1: /* 2: * Copyright (c) 1985 Regents of the University of California. 3: * 4: * Use and reproduction of this software are granted in accordance with 5: * the terms and conditions specified in the Berkeley Software License 6: * Agreement (in particular, this entails acknowledgement of the programs' 7: * source, and inclusion of this notice) with the additional understanding 8: * that all recipients should regard themselves as participants in an 9: * ongoing research project and hence should feel obligated to report 10: * their experiences (good or bad) with these elementary function codes, 11: * using "sendbug 4bsd-bugs@BERKELEY", to the authors. 12: */ 13: 14: #ifndef lint 15: static char sccsid[] = "@(#)pow.c 4.5 (Berkeley) 8/21/85"; 16: #endif not lint 17: 18: /* POW(X,Y) 19: * RETURN X**Y 20: * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 21: * CODED IN C BY K.C. NG, 1/8/85; 22: * REVISED BY K.C. NG on 7/10/85. 23: * 24: * Required system supported functions: 25: * scalb(x,n) 26: * logb(x) 27: * copysign(x,y) 28: * finite(x) 29: * drem(x,y) 30: * 31: * Required kernel functions: 32: * exp__E(a,c) ...return exp(a+c) - 1 - a*a/2 33: * log__L(x) ...return (log(1+x) - 2s)/s, s=x/(2+x) 34: * pow_p(x,y) ...return +(anything)**(finite non zero) 35: * 36: * Method 37: * 1. Compute and return log(x) in three pieces: 38: * log(x) = n*ln2 + hi + lo, 39: * where n is an integer. 40: * 2. Perform y*log(x) by simulating muti-precision arithmetic and 41: * return the answer in three pieces: 42: * y*log(x) = m*ln2 + hi + lo, 43: * where m is an integer. 44: * 3. Return x**y = exp(y*log(x)) 45: * = 2^m * ( exp(hi+lo) ). 46: * 47: * Special cases: 48: * (anything) ** 0 is 1 ; 49: * (anything) ** 1 is itself; 50: * (anything) ** NaN is NaN; 51: * NaN ** (anything except 0) is NaN; 52: * +-(anything > 1) ** +INF is +INF; 53: * +-(anything > 1) ** -INF is +0; 54: * +-(anything < 1) ** +INF is +0; 55: * +-(anything < 1) ** -INF is +INF; 56: * +-1 ** +-INF is NaN and signal INVALID; 57: * +0 ** +(anything except 0, NaN) is +0; 58: * -0 ** +(anything except 0, NaN, odd integer) is +0; 59: * +0 ** -(anything except 0, NaN) is +INF and signal DIV-BY-ZERO; 60: * -0 ** -(anything except 0, NaN, odd integer) is +INF with signal; 61: * -0 ** (odd integer) = -( +0 ** (odd integer) ); 62: * +INF ** +(anything except 0,NaN) is +INF; 63: * +INF ** -(anything except 0,NaN) is +0; 64: * -INF ** (odd integer) = -( +INF ** (odd integer) ); 65: * -INF ** (even integer) = ( +INF ** (even integer) ); 66: * -INF ** -(anything except integer,NaN) is NaN with signal; 67: * -(x=anything) ** (k=integer) is (-1)**k * (x ** k); 68: * -(anything except 0) ** (non-integer) is NaN with signal; 69: * 70: * Accuracy: 71: * pow(x,y) returns x**y nearly rounded. In particular, on a SUN, a VAX, 72: * and a Zilog Z8000, 73: * pow(integer,integer) 74: * always returns the correct integer provided it is representable. 75: * In a test run with 100,000 random arguments with 0 < x, y < 20.0 76: * on a VAX, the maximum observed error was 1.79 ulps (units in the 77: * last place). 78: * 79: * Constants : 80: * The hexadecimal values are the intended ones for the following constants. 81: * The decimal values may be used, provided that the compiler will convert 82: * from decimal to binary accurately enough to produce the hexadecimal values 83: * shown. 84: */ 85: 86: #ifdef VAX /* VAX D format */ 87: #include <errno.h> 88: extern double infnan(); 89: 90: /* double static */ 91: /* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */ 92: /* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */ 93: /* invln2 = 1.4426950408889634148E0 , Hex 2^ 1 * .B8AA3B295C17F1 */ 94: /* sqrt2 = 1.4142135623730950622E0 ; Hex 2^ 1 * .B504F333F9DE65 */ 95: static long ln2hix[] = { 0x72174031, 0x0000f7d0}; 96: static long ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1}; 97: static long invln2x[] = { 0xaa3b40b8, 0x17f1295c}; 98: static long sqrt2x[] = { 0x04f340b5, 0xde6533f9}; 99: #define ln2hi (*(double*)ln2hix) 100: #define ln2lo (*(double*)ln2lox) 101: #define invln2 (*(double*)invln2x) 102: #define sqrt2 (*(double*)sqrt2x) 103: #else /* IEEE double */ 104: double static 105: ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */ 106: ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */ 107: invln2 = 1.4426950408889633870E0 , /*Hex 2^ 0 * 1.71547652B82FE */ 108: sqrt2 = 1.4142135623730951455E0 ; /*Hex 2^ 0 * 1.6A09E667F3BCD */ 109: #endif 110: 111: double static zero=0.0, half=1.0/2.0, one=1.0, two=2.0, negone= -1.0; 112: 113: double pow(x,y) 114: double x,y; 115: { 116: double drem(),pow_p(),copysign(),t; 117: int finite(); 118: 119: if (y==zero) return(one); 120: else if(y==one 121: #ifndef VAX 122: ||x!=x 123: #endif 124: ) return( x ); /* if x is NaN or y=1 */ 125: #ifndef VAX 126: else if(y!=y) return( y ); /* if y is NaN */ 127: #endif 128: else if(!finite(y)) /* if y is INF */ 129: if((t=copysign(x,one))==one) return(zero/zero); 130: else if(t>one) return((y>zero)?y:zero); 131: else return((y<zero)?-y:zero); 132: else if(y==two) return(x*x); 133: else if(y==negone) return(one/x); 134: 135: /* sign(x) = 1 */ 136: else if(copysign(one,x)==one) return(pow_p(x,y)); 137: 138: /* sign(x)= -1 */ 139: /* if y is an even integer */ 140: else if ( (t=drem(y,two)) == zero) return( pow_p(-x,y) ); 141: 142: /* if y is an odd integer */ 143: else if (copysign(t,one) == one) return( -pow_p(-x,y) ); 144: 145: /* Henceforth y is not an integer */ 146: else if(x==zero) /* x is -0 */ 147: return((y>zero)?-x:one/(-x)); 148: else { /* return NaN */ 149: #ifdef VAX 150: return (infnan(EDOM)); /* NaN */ 151: #else /* IEEE double */ 152: return(zero/zero); 153: #endif 154: } 155: } 156: 157: /* pow_p(x,y) return x**y for x with sign=1 and finite y */ 158: static double pow_p(x,y) 159: double x,y; 160: { 161: double logb(),scalb(),copysign(),log__L(),exp__E(); 162: double c,s,t,z,tx,ty; 163: float sx,sy; 164: long k=0; 165: int n,m; 166: 167: if(x==zero||!finite(x)) { /* if x is +INF or +0 */ 168: #ifdef VAX 169: return((y>zero)?x:infnan(ERANGE)); /* if y<zero, return +INF */ 170: #else 171: return((y>zero)?x:one/x); 172: #endif 173: } 174: if(x==1.0) return(x); /* if x=1.0, return 1 since y is finite */ 175: 176: /* reduce x to z in [sqrt(1/2)-1, sqrt(2)-1] */ 177: z=scalb(x,-(n=logb(x))); 178: #ifndef VAX /* IEEE double */ /* subnormal number */ 179: if(n <= -1022) {n += (m=logb(z)); z=scalb(z,-m);} 180: #endif 181: if(z >= sqrt2 ) {n += 1; z *= half;} z -= one ; 182: 183: /* log(x) = nlog2+log(1+z) ~ nlog2 + t + tx */ 184: s=z/(two+z); c=z*z*half; tx=s*(c+log__L(s*s)); 185: t= z-(c-tx); tx += (z-t)-c; 186: 187: /* if y*log(x) is neither too big nor too small */ 188: if((s=logb(y)+logb(n+t)) < 12.0) 189: if(s>-60.0) { 190: 191: /* compute y*log(x) ~ mlog2 + t + c */ 192: s=y*(n+invln2*t); 193: m=s+copysign(half,s); /* m := nint(y*log(x)) */ 194: k=y; 195: if((double)k==y) { /* if y is an integer */ 196: k = m-k*n; 197: sx=t; tx+=(t-sx); } 198: else { /* if y is not an integer */ 199: k =m; 200: tx+=n*ln2lo; 201: sx=(c=n*ln2hi)+t; tx+=(c-sx)+t; } 202: /* end of checking whether k==y */ 203: 204: sy=y; ty=y-sy; /* y ~ sy + ty */ 205: s=(double)sx*sy-k*ln2hi; /* (sy+ty)*(sx+tx)-kln2 */ 206: z=(tx*ty-k*ln2lo); 207: tx=tx*sy; ty=sx*ty; 208: t=ty+z; t+=tx; t+=s; 209: c= -((((t-s)-tx)-ty)-z); 210: 211: /* return exp(y*log(x)) */ 212: t += exp__E(t,c); return(scalb(one+t,m)); 213: } 214: /* end of if log(y*log(x)) > -60.0 */ 215: 216: else 217: /* exp(+- tiny) = 1 with inexact flag */ 218: {ln2hi+ln2lo; return(one);} 219: else if(copysign(one,y)*(n+invln2*t) <zero) 220: /* exp(-(big#)) underflows to zero */ 221: return(scalb(one,-5000)); 222: else 223: /* exp(+(big#)) overflows to INF */ 224: return(scalb(one, 5000)); 225: 226: }