1: /* 2: * Copyright (c) 1985 Regents of the University of California. 3: * 4: * Use and reproduction of this software are granted in accordance with 5: * the terms and conditions specified in the Berkeley Software License 6: * Agreement (in particular, this entails acknowledgement of the programs' 7: * source, and inclusion of this notice) with the additional understanding 8: * that all recipients should regard themselves as participants in an 9: * ongoing research project and hence should feel obligated to report 10: * their experiences (good or bad) with these elementary function codes, 11: * using "sendbug 4bsd-bugs@BERKELEY", to the authors. 12: */ 13: 14: #ifndef lint 15: static char sccsid[] = "@(#)cabs.c 1.2 (Berkeley) 8/21/85"; 16: #endif not lint 17: 18: /* CABS(Z) 19: * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER Z = X + iY 20: * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 21: * CODED IN C BY K.C. NG, 11/28/84. 22: * REVISED BY K.C. NG, 7/12/85. 23: * 24: * Required kernel function : 25: * hypot(x,y) 26: * 27: * Method : 28: * cabs(z) = hypot(x,y) . 29: */ 30: 31: double cabs(z) 32: struct { double x, y;} z; 33: { 34: double hypot(); 35: return(hypot(z.x,z.y)); 36: } 37: 38: 39: /* HYPOT(X,Y) 40: * RETURN THE SQUARE ROOT OF X^2 + Y^2 WHERE Z=X+iY 41: * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 42: * CODED IN C BY K.C. NG, 11/28/84; 43: * REVISED BY K.C. NG, 7/12/85. 44: * 45: * Required system supported functions : 46: * copysign(x,y) 47: * finite(x) 48: * scalb(x,N) 49: * sqrt(x) 50: * 51: * Method : 52: * 1. replace x by |x| and y by |y|, and swap x and 53: * y if y > x (hence x is never smaller than y). 54: * 2. Hypot(x,y) is computed by: 55: * Case I, x/y > 2 56: * 57: * y 58: * hypot = x + ----------------------------- 59: * 2 60: * sqrt ( 1 + [x/y] ) + x/y 61: * 62: * Case II, x/y <= 2 63: * y 64: * hypot = x + -------------------------------------------------- 65: * 2 66: * [x/y] - 2 67: * (sqrt(2)+1) + (x-y)/y + ----------------------------- 68: * 2 69: * sqrt ( 1 + [x/y] ) + sqrt(2) 70: * 71: * 72: * 73: * Special cases: 74: * hypot(x,y) is INF if x or y is +INF or -INF; else 75: * hypot(x,y) is NAN if x or y is NAN. 76: * 77: * Accuracy: 78: * hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units 79: * in the last place). See Kahan's "Interval Arithmetic Options in the 80: * Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics 81: * 1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate 82: * code follows in comments.) In a test run with 500,000 random arguments 83: * on a VAX, the maximum observed error was .959 ulps. 84: * 85: * Constants: 86: * The hexadecimal values are the intended ones for the following constants. 87: * The decimal values may be used, provided that the compiler will convert 88: * from decimal to binary accurately enough to produce the hexadecimal values 89: * shown. 90: */ 91: 92: #ifdef VAX /* VAX D format */ 93: /* static double */ 94: /* r2p1hi = 2.4142135623730950345E0 , Hex 2^ 2 * .9A827999FCEF32 */ 95: /* r2p1lo = 1.4349369327986523769E-17 , Hex 2^-55 * .84597D89B3754B */ 96: /* sqrt2 = 1.4142135623730950622E0 ; Hex 2^ 1 * .B504F333F9DE65 */ 97: static long r2p1hix[] = { 0x8279411a, 0xef3299fc}; 98: static long r2p1lox[] = { 0x597d2484, 0x754b89b3}; 99: static long sqrt2x[] = { 0x04f340b5, 0xde6533f9}; 100: #define r2p1hi (*(double*)r2p1hix) 101: #define r2p1lo (*(double*)r2p1lox) 102: #define sqrt2 (*(double*)sqrt2x) 103: #else /* IEEE double format */ 104: static double 105: r2p1hi = 2.4142135623730949234E0 , /*Hex 2^1 * 1.3504F333F9DE6 */ 106: r2p1lo = 1.2537167179050217666E-16 , /*Hex 2^-53 * 1.21165F626CDD5 */ 107: sqrt2 = 1.4142135623730951455E0 ; /*Hex 2^ 0 * 1.6A09E667F3BCD */ 108: #endif 109: 110: double hypot(x,y) 111: double x, y; 112: { 113: static double zero=0, one=1, 114: small=1.0E-18; /* fl(1+small)==1 */ 115: static ibig=30; /* fl(1+2**(2*ibig))==1 */ 116: double copysign(),scalb(),logb(),sqrt(),t,r; 117: int finite(), exp; 118: 119: if(finite(x)) 120: if(finite(y)) 121: { 122: x=copysign(x,one); 123: y=copysign(y,one); 124: if(y > x) 125: { t=x; x=y; y=t; } 126: if(x == zero) return(zero); 127: if(y == zero) return(x); 128: exp= logb(x); 129: if(exp-(int)logb(y) > ibig ) 130: /* raise inexact flag and return |x| */ 131: { one+small; return(x); } 132: 133: /* start computing sqrt(x^2 + y^2) */ 134: r=x-y; 135: if(r>y) { /* x/y > 2 */ 136: r=x/y; 137: r=r+sqrt(one+r*r); } 138: else { /* 1 <= x/y <= 2 */ 139: r/=y; t=r*(r+2.0); 140: r+=t/(sqrt2+sqrt(2.0+t)); 141: r+=r2p1lo; r+=r2p1hi; } 142: 143: r=y/r; 144: return(x+r); 145: 146: } 147: 148: else if(y==y) /* y is +-INF */ 149: return(copysign(y,one)); 150: else 151: return(y); /* y is NaN and x is finite */ 152: 153: else if(x==x) /* x is +-INF */ 154: return (copysign(x,one)); 155: else if(finite(y)) 156: return(x); /* x is NaN, y is finite */ 157: else if(y!=y) return(y); /* x and y is NaN */ 158: else return(copysign(y,one)); /* y is INF */ 159: } 160: 161: /* A faster but less accurate version of cabs(x,y) */ 162: #if 0 163: double hypot(x,y) 164: double x, y; 165: { 166: static double zero=0, one=1; 167: small=1.0E-18; /* fl(1+small)==1 */ 168: static ibig=30; /* fl(1+2**(2*ibig))==1 */ 169: double copysign(),scalb(),logb(),sqrt(),temp; 170: int finite(), exp; 171: 172: if(finite(x)) 173: if(finite(y)) 174: { 175: x=copysign(x,one); 176: y=copysign(y,one); 177: if(y > x) 178: { temp=x; x=y; y=temp; } 179: if(x == zero) return(zero); 180: if(y == zero) return(x); 181: exp= logb(x); 182: x=scalb(x,-exp); 183: if(exp-(int)logb(y) > ibig ) 184: /* raise inexact flag and return |x| */ 185: { one+small; return(scalb(x,exp)); } 186: else y=scalb(y,-exp); 187: return(scalb(sqrt(x*x+y*y),exp)); 188: } 189: 190: else if(y==y) /* y is +-INF */ 191: return(copysign(y,one)); 192: else 193: return(y); /* y is NaN and x is finite */ 194: 195: else if(x==x) /* x is +-INF */ 196: return (copysign(x,one)); 197: else if(finite(y)) 198: return(x); /* x is NaN, y is finite */ 199: else if(y!=y) return(y); /* x and y is NaN */ 200: else return(copysign(y,one)); /* y is INF */ 201: } 202: #endif