1: /* 2: * Copyright (c) 1985 Regents of the University of California. 3: * 4: * Use and reproduction of this software are granted in accordance with 5: * the terms and conditions specified in the Berkeley Software License 6: * Agreement (in particular, this entails acknowledgement of the programs' 7: * source, and inclusion of this notice) with the additional understanding 8: * that all recipients should regard themselves as participants in an 9: * ongoing research project and hence should feel obligated to report 10: * their experiences (good or bad) with these elementary function codes, 11: * using "sendbug 4bsd-bugs@BERKELEY", to the authors. 12: */ 13: 14: #ifndef lint 15: static char sccsid[] = "@(#)support.c 1.1 (Berkeley) 5/23/85"; 16: #endif not lint 17: 18: /* 19: * Some IEEE standard p754 recommended functions and remainder and sqrt for 20: * supporting the C elementary functions. 21: ****************************************************************************** 22: * WARNING: 23: * These codes are developed (in double) to support the C elementary 24: * functions temporarily. They are not universal, and some of them are very 25: * slow (in particular, drem and sqrt is extremely inefficient). Each 26: * computer system should have its implementation of these functions using 27: * its own assembler. 28: ****************************************************************************** 29: * 30: * IEEE p754 required operations: 31: * drem(x,p) 32: * returns x REM y = x - [x/y]*y , where [x/y] is the integer 33: * nearest x/y; in half way case, choose the even one. 34: * sqrt(x) 35: * returns the square root of x correctly rounded according to 36: * the rounding mod. 37: * 38: * IEEE p754 recommended functions: 39: * (a) copysign(x,y) 40: * returns x with the sign of y. 41: * (b) scalb(x,N) 42: * returns x * (2**N), for integer values N. 43: * (c) logb(x) 44: * returns the unbiased exponent of x, a signed integer in 45: * double precision, except that logb(0) is -INF, logb(INF) 46: * is +INF, and logb(NAN) is that NAN. 47: * (d) finite(x) 48: * returns the value TRUE if -INF < x < +INF and returns 49: * FALSE otherwise. 50: * 51: * 52: * CODED IN C BY K.C. NG, 11/25/84; 53: * REVISED BY K.C. NG on 1/22/85, 2/13/85, 3/24/85. 54: */ 55: 56: 57: #ifdef VAX /* VAX D format */ 58: static unsigned short msign=0x7fff , mexp =0x7f80 ; 59: static short prep1=57, gap=7, bias=129 ; 60: static double novf=1.7E38, nunf=3.0E-39, zero=0.0 ; 61: #else /*IEEE double format */ 62: static unsigned short msign=0x7fff, mexp =0x7ff0 ; 63: static short prep1=54, gap=4, bias=1023 ; 64: static double novf=1.7E308, nunf=3.0E-308,zero=0.0; 65: #endif 66: 67: double scalb(x,N) 68: double x; int N; 69: { 70: int k; 71: double scalb(); 72: 73: #ifdef NATIONAL 74: unsigned short *px=(unsigned short *) &x + 3; 75: #else /* VAX, SUN, ZILOG */ 76: unsigned short *px=(unsigned short *) &x; 77: #endif 78: 79: if( x == zero ) return(x); 80: 81: #ifdef VAX 82: if( (k= *px & mexp ) != ~msign ) { 83: if( N<-260) return(nunf*nunf); else if(N>260) return(novf+novf); 84: #else /* IEEE */ 85: if( (k= *px & mexp ) != mexp ) { 86: if( N<-2100) return(nunf*nunf); else if(N>2100) return(novf+novf); 87: if( k == 0 ) { 88: x *= scalb(1.0,(int)prep1); N -= prep1; return(scalb(x,N));} 89: #endif 90: 91: if((k = (k>>gap)+ N) > 0 ) 92: if( k < (mexp>>gap) ) *px = (*px&~mexp) | (k<<gap); 93: else x=novf+novf; /* overflow */ 94: else 95: if( k > -prep1 ) 96: /* gradual underflow */ 97: {*px=(*px&~mexp)|(short)(1<<gap); x *= scalb(1.0,k-1);} 98: else 99: return(nunf*nunf); 100: } 101: return(x); 102: } 103: 104: 105: double copysign(x,y) 106: double x,y; 107: { 108: #ifdef NATIONAL 109: unsigned short *px=(unsigned short *) &x+3, 110: *py=(unsigned short *) &y+3; 111: #else /* VAX, SUN, ZILOG */ 112: unsigned short *px=(unsigned short *) &x, 113: *py=(unsigned short *) &y; 114: #endif 115: 116: #ifdef VAX 117: if ( (*px & mexp) == 0 ) return(x); 118: #endif 119: 120: *px = ( *px & msign ) | ( *py & ~msign ); 121: return(x); 122: } 123: 124: double logb(x) 125: double x; 126: { 127: 128: #ifdef NATIONAL 129: short *px=(short *) &x+3, k; 130: #else /* VAX, SUN, ZILOG */ 131: short *px=(short *) &x, k; 132: #endif 133: 134: #ifdef VAX 135: return( ((*px & mexp)>>gap) - bias); 136: #else /* IEEE */ 137: if( (k= *px & mexp ) != mexp ) 138: if ( k != 0 ) 139: return ( (k>>gap) - bias ); 140: else if( x != zero) 141: return ( -1022.0 ); 142: else 143: return(-(1.0/zero)); 144: else if(x != x) 145: return(x); 146: else 147: {*px &= msign; return(x);} 148: #endif 149: } 150: 151: finite(x) 152: double x; 153: { 154: #ifdef VAX 155: return(1.0); 156: #else /* IEEE */ 157: #ifdef NATIONAL 158: return( (*((short *) &x+3 ) & mexp ) != mexp ); 159: #else /* SUN, ZILOG */ 160: return( (*((short *) &x ) & mexp ) != mexp ); 161: #endif 162: #endif 163: } 164: 165: double drem(x,p) 166: double x,p; 167: { 168: short sign; 169: double hp,dp,tmp,drem(),scalb(); 170: unsigned short k; 171: #ifdef NATIONAL 172: unsigned short 173: *px=(unsigned short *) &x +3, 174: *pp=(unsigned short *) &p +3, 175: *pd=(unsigned short *) &dp +3, 176: *pt=(unsigned short *) &tmp+3; 177: #else /* VAX, SUN, ZILOG */ 178: unsigned short 179: *px=(unsigned short *) &x , 180: *pp=(unsigned short *) &p , 181: *pd=(unsigned short *) &dp , 182: *pt=(unsigned short *) &tmp; 183: #endif 184: 185: *pp &= msign ; 186: 187: #ifdef VAX 188: if( ( *px & mexp ) == ~msign || p == zero ) 189: #else /* IEEE */ 190: if( ( *px & mexp ) == mexp || p == zero ) 191: #endif 192: 193: return( (x != x)? x:zero/zero ); 194: 195: else if ( ((*pp & mexp)>>gap) <= 1 ) 196: /* subnormal p, or almost subnormal p */ 197: { double b; b=scalb(1.0,(int)prep1); 198: p *= b; x = drem(x,p); x *= b; return(drem(x,p)/b);} 199: else if ( p >= novf/2) 200: { p /= 2 ; x /= 2; return(drem(x,p)*2);} 201: else 202: { 203: dp=p+p; hp=p/2; 204: sign= *px & ~msign ; 205: *px &= msign ; 206: while ( x > dp ) 207: { 208: k=(*px & mexp) - (*pd & mexp) ; 209: tmp = dp ; 210: *pt += k ; 211: 212: #ifdef VAX 213: if( x < tmp ) *pt -= 128 ; 214: #else /* IEEE */ 215: if( x < tmp ) *pt -= 16 ; 216: #endif 217: 218: x -= tmp ; 219: } 220: if ( x > hp ) 221: { x -= p ; if ( x >= hp ) x -= p ; } 222: 223: *px = *px ^ sign; 224: return( x); 225: 226: } 227: } 228: double sqrt(x) 229: double x; 230: { 231: double q,s,b,r; 232: double logb(),scalb(); 233: double t,zero=0.0; 234: int m,n,i,finite(); 235: #ifdef VAX 236: int k=54; 237: #else /* IEEE */ 238: int k=51; 239: #endif 240: 241: /* sqrt(NaN) is NaN, sqrt(+-0) = +-0 */ 242: if(x!=x||x==zero) return(x); 243: 244: /* sqrt(negative) is invalid */ 245: if(x<zero) return(zero/zero); 246: 247: /* sqrt(INF) is INF */ 248: if(!finite(x)) return(x); 249: 250: /* scale x to [1,4) */ 251: n=logb(x); 252: x=scalb(x,-n); 253: if((m=logb(x))!=0) x=scalb(x,-m); /* subnormal number */ 254: m += n; 255: n = m/2; 256: if((n+n)!=m) {x *= 2; m -=1; n=m/2;} 257: 258: /* generate sqrt(x) bit by bit (accumulating in q) */ 259: q=1.0; s=4.0; x -= 1.0; r=1; 260: for(i=1;i<=k;i++) { 261: t=s+1; x *= 4; r /= 2; 262: if(t<=x) { 263: s=t+t+2, x -= t; q += r;} 264: else 265: s *= 2; 266: } 267: 268: /* generate the last bit and determine the final rounding */ 269: r/=2; x *= 4; 270: if(x==zero) goto end; 100+r; /* trigger inexact flag */ 271: if(s<x) { 272: q+=r; x -=s; s += 2; s *= 2; x *= 4; 273: t = (x-s)-5; 274: b=1.0+3*r/4; if(b==1.0) goto end; /* b==1 : Round-to-zero */ 275: b=1.0+r/4; if(b>1.0) t=1; /* b>1 : Round-to-(+INF) */ 276: if(t>=0) q+=r; } /* else: Round-to-nearest */ 277: else { 278: s *= 2; x *= 4; 279: t = (x-s)-1; 280: b=1.0+3*r/4; if(b==1.0) goto end; 281: b=1.0+r/4; if(b>1.0) t=1; 282: if(t>=0) q+=r; } 283: 284: end: return(scalb(q,n)); 285: } 286: 287: #if 0 288: /* DREM(X,Y) 289: * RETURN X REM Y =X-N*Y, N=[X/Y] ROUNDED (ROUNDED TO EVEN IN THE HALF WAY CASE) 290: * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 291: * INTENDED FOR ASSEMBLY LANGUAGE 292: * CODED IN C BY K.C. NG, 3/23/85, 4/8/85. 293: * 294: * Warning: this code should not get compiled in unless ALL of 295: * the following machine-dependent routines are supplied. 296: * 297: * Required machine dependent functions (not on a VAX): 298: * swapINX(i): save inexact flag and reset it to "i" 299: * swapENI(e): save inexact enable and reset it to "e" 300: */ 301: 302: double drem(x,y) 303: double x,y; 304: { 305: 306: #ifdef NATIONAL /* order of words in floating point number */ 307: static n0=3,n1=2,n2=1,n3=0; 308: #else /* VAX, SUN, ZILOG */ 309: static n0=0,n1=1,n2=2,n3=3; 310: #endif 311: 312: static unsigned short mexp =0x7ff0, m25 =0x0190, m57 =0x0390; 313: static double zero=0.0; 314: double hy,y1,t,t1; 315: short k; 316: long n; 317: int i,e; 318: unsigned short xexp,yexp, *px =(unsigned short *) &x , 319: nx,nf, *py =(unsigned short *) &y , 320: sign, *pt =(unsigned short *) &t , 321: *pt1 =(unsigned short *) &t1 ; 322: 323: xexp = px[n0] & mexp ; /* exponent of x */ 324: yexp = py[n0] & mexp ; /* exponent of y */ 325: sign = px[n0] &0x8000; /* sign of x */ 326: 327: /* return NaN if x is NaN, or y is NaN, or x is INF, or y is zero */ 328: if(x!=x) return(x); if(y!=y) return(y); /* x or y is NaN */ 329: if( xexp == mexp ) return(zero/zero); /* x is INF */ 330: if(y==zero) return(y/y); 331: 332: /* save the inexact flag and inexact enable in i and e respectively 333: * and reset them to zero 334: */ 335: i=swapINX(0); e=swapENI(0); 336: 337: /* subnormal number */ 338: nx=0; 339: if(yexp==0) {t=1.0,pt[n0]+=m57; y*=t; nx=m57;} 340: 341: /* if y is tiny (biased exponent <= 57), scale up y to y*2**57 */ 342: if( yexp <= m57 ) {py[n0]+=m57; nx+=m57; yexp+=m57;} 343: 344: nf=nx; 345: py[n0] &= 0x7fff; 346: px[n0] &= 0x7fff; 347: 348: /* mask off the least significant 27 bits of y */ 349: t=y; pt[n3]=0; pt[n2]&=0xf800; y1=t; 350: 351: /* LOOP: argument reduction on x whenever x > y */ 352: loop: 353: while ( x > y ) 354: { 355: t=y; 356: t1=y1; 357: xexp=px[n0]&mexp; /* exponent of x */ 358: k=xexp-yexp-m25; 359: if(k>0) /* if x/y >= 2**26, scale up y so that x/y < 2**26 */ 360: {pt[n0]+=k;pt1[n0]+=k;} 361: n=x/t; x=(x-n*t1)-n*(t-t1); 362: } 363: /* end while (x > y) */ 364: 365: if(nx!=0) {t=1.0; pt[n0]+=nx; x*=t; nx=0; goto loop;} 366: 367: /* final adjustment */ 368: 369: hy=y/2.0; 370: if(x>hy||((x==hy)&&n%2==1)) x-=y; 371: px[n0] ^= sign; 372: if(nf!=0) { t=1.0; pt[n0]-=nf; x*=t;} 373: 374: /* restore inexact flag and inexact enable */ 375: swapINX(i); swapENI(e); 376: 377: return(x); 378: } 379: #endif 380: 381: #if 0 382: /* SQRT 383: * RETURN CORRECTLY ROUNDED (ACCORDING TO THE ROUNDING MODE) SQRT 384: * FOR IEEE DOUBLE PRECISION ONLY, INTENDED FOR ASSEMBLY LANGUAGE 385: * CODED IN C BY K.C. NG, 3/22/85. 386: * 387: * Warning: this code should not get compiled in unless ALL of 388: * the following machine-dependent routines are supplied. 389: * 390: * Required machine dependent functions: 391: * swapINX(i) ...return the status of INEXACT flag and reset it to "i" 392: * swapRM(r) ...return the current Rounding Mode and reset it to "r" 393: * swapENI(e) ...return the status of inexact enable and reset it to "e" 394: * addc(t) ...perform t=t+1 regarding t as a 64 bit unsigned integer 395: * subc(t) ...perform t=t-1 regarding t as a 64 bit unsigned integer 396: */ 397: 398: static unsigned long table[] = { 399: 0, 1204, 3062, 5746, 9193, 13348, 18162, 23592, 29598, 36145, 43202, 50740, 400: 58733, 67158, 75992, 85215, 83599, 71378, 60428, 50647, 41945, 34246, 27478, 401: 21581, 16499, 12183, 8588, 5674, 3403, 1742, 661, 130, }; 402: 403: double newsqrt(x) 404: double x; 405: { 406: double y,z,t,addc(),subc(),b54=134217728.*134217728.; /* b54=2**54 */ 407: long mx,scalx,mexp=0x7ff00000; 408: int i,j,r,e,swapINX(),swapRM(),swapENI(); 409: unsigned long *py=(unsigned long *) &y , 410: *pt=(unsigned long *) &t , 411: *px=(unsigned long *) &x ; 412: #ifdef NATIONAL /* ordering of word in a floating point number */ 413: int n0=1, n1=0; 414: #else 415: int n0=0, n1=1; 416: #endif 417: /* Rounding Mode: RN ...round-to-nearest 418: * RZ ...round-towards 0 419: * RP ...round-towards +INF 420: * RM ...round-towards -INF 421: */ 422: int RN=0,RZ=1,RP=2,RM=3;/* machine dependent: work on a Zilog Z8070 423: * and a National 32081 & 16081 424: */ 425: 426: /* exceptions */ 427: if(x!=x||x==0.0) return(x); /* sqrt(NaN) is NaN, sqrt(+-0) = +-0 */ 428: if(x<0) return((x-x)/(x-x)); /* sqrt(negative) is invalid */ 429: if((mx=px[n0]&mexp)==mexp) return(x); /* sqrt(+INF) is +INF */ 430: 431: /* save, reset, initialize */ 432: e=swapENI(0); /* ...save and reset the inexact enable */ 433: i=swapINX(0); /* ...save INEXACT flag */ 434: r=swapRM(RN); /* ...save and reset the Rounding Mode to RN */ 435: scalx=0; 436: 437: /* subnormal number, scale up x to x*2**54 */ 438: if(mx==0) {x *= b54 ; scalx-=0x01b00000;} 439: 440: /* scale x to avoid intermediate over/underflow: 441: * if (x > 2**512) x=x/2**512; if (x < 2**-512) x=x*2**512 */ 442: if(mx>0x5ff00000) {px[n0] -= 0x20000000; scalx+= 0x10000000;} 443: if(mx<0x1ff00000) {px[n0] += 0x20000000; scalx-= 0x10000000;} 444: 445: /* magic initial approximation to almost 8 sig. bits */ 446: py[n0]=(px[n0]>>1)+0x1ff80000; 447: py[n0]=py[n0]-table[(py[n0]>>15)&31]; 448: 449: /* Heron's rule once with correction to improve y to almost 18 sig. bits */ 450: t=x/y; y=y+t; py[n0]=py[n0]-0x00100006; py[n1]=0; 451: 452: /* triple to almost 56 sig. bits; now y approx. sqrt(x) to within 1 ulp */ 453: t=y*y; z=t; pt[n0]+=0x00100000; t+=z; z=(x-z)*y; 454: t=z/(t+x) ; pt[n0]+=0x00100000; y+=t; 455: 456: /* twiddle last bit to force y correctly rounded */ 457: swapRM(RZ); /* ...set Rounding Mode to round-toward-zero */ 458: swapINX(0); /* ...clear INEXACT flag */ 459: swapENI(e); /* ...restore inexact enable status */ 460: t=x/y; /* ...chopped quotient, possibly inexact */ 461: j=swapINX(i); /* ...read and restore inexact flag */ 462: if(j==0) { if(t==y) goto end; else t=subc(t); } /* ...t=t-ulp */ 463: b54+0.1; /* ..trigger inexact flag, sqrt(x) is inexact */ 464: if(r==RN) t=addc(t); /* ...t=t+ulp */ 465: else if(r==RP) { t=addc(t);y=addc(y);}/* ...t=t+ulp;y=y+ulp; */ 466: y=y+t; /* ...chopped sum */ 467: py[n0]=py[n0]-0x00100000; /* ...correctly rounded sqrt(x) */ 468: end: py[n0]=py[n0]+scalx; /* ...scale back y */ 469: swapRM(r); /* ...restore Rounding Mode */ 470: return(y); 471: } 472: #endif