1: /* 2: * Copyright (c) 1985 Regents of the University of California. 3: * 4: * Use and reproduction of this software are granted in accordance with 5: * the terms and conditions specified in the Berkeley Software License 6: * Agreement (in particular, this entails acknowledgement of the programs' 7: * source, and inclusion of this notice) with the additional understanding 8: * that all recipients should regard themselves as participants in an 9: * ongoing research project and hence should feel obligated to report 10: * their experiences (good or bad) with these elementary function codes, 11: * using "sendbug 4bsd-bugs@BERKELEY", to the authors. 12: */ 13: 14: #ifndef lint 15: static char sccsid[] = "@(#)trig.c 1.2 (Berkeley) 8/22/85"; 16: #endif not lint 17: 18: /* SIN(X), COS(X), TAN(X) 19: * RETURN THE SINE, COSINE, AND TANGENT OF X RESPECTIVELY 20: * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 21: * CODED IN C BY K.C. NG, 1/8/85; 22: * REVISED BY W. Kahan and K.C. NG, 8/17/85. 23: * 24: * Required system supported functions: 25: * copysign(x,y) 26: * finite(x) 27: * drem(x,p) 28: * 29: * Static kernel functions: 30: * sin__S(z) ....sin__S(x*x) return (sin(x)-x)/x 31: * cos__C(z) ....cos__C(x*x) return cos(x)-1-x*x/2 32: * 33: * Method. 34: * Let S and C denote the polynomial approximations to sin and cos 35: * respectively on [-PI/4, +PI/4]. 36: * 37: * SIN and COS: 38: * 1. Reduce the argument into [-PI , +PI] by the remainder function. 39: * 2. For x in (-PI,+PI), there are three cases: 40: * case 1: |x| < PI/4 41: * case 2: PI/4 <= |x| < 3PI/4 42: * case 3: 3PI/4 <= |x|. 43: * SIN and COS of x are computed by: 44: * 45: * sin(x) cos(x) remark 46: * ---------------------------------------------------------- 47: * case 1 S(x) C(x) 48: * case 2 sign(x)*C(y) S(y) y=PI/2-|x| 49: * case 3 S(y) -C(y) y=sign(x)*(PI-|x|) 50: * ---------------------------------------------------------- 51: * 52: * TAN: 53: * 1. Reduce the argument into [-PI/2 , +PI/2] by the remainder function. 54: * 2. For x in (-PI/2,+PI/2), there are two cases: 55: * case 1: |x| < PI/4 56: * case 2: PI/4 <= |x| < PI/2 57: * TAN of x is computed by: 58: * 59: * tan (x) remark 60: * ---------------------------------------------------------- 61: * case 1 S(x)/C(x) 62: * case 2 C(y)/S(y) y=sign(x)*(PI/2-|x|) 63: * ---------------------------------------------------------- 64: * 65: * Notes: 66: * 1. S(y) and C(y) were computed by: 67: * S(y) = y+y*sin__S(y*y) 68: * C(y) = 1-(y*y/2-cos__C(x*x)) ... if y*y/2 < thresh, 69: * = 0.5-((y*y/2-0.5)-cos__C(x*x)) ... if y*y/2 >= thresh. 70: * where 71: * thresh = 0.5*(acos(3/4)**2) 72: * 73: * 2. For better accuracy, we use the following formula for S/C for tan 74: * (k=0): let ss=sin__S(y*y), and cc=cos__C(y*y), then 75: * 76: * y+y*ss (y*y/2-cc)+ss 77: * S(y)/C(y) = -------- = y + y * ---------------. 78: * C C 79: * 80: * 81: * Special cases: 82: * Let trig be any of sin, cos, or tan. 83: * trig(+-INF) is NaN, with signals; 84: * trig(NaN) is that NaN; 85: * trig(n*PI/2) is exact for any integer n, provided n*PI is 86: * representable; otherwise, trig(x) is inexact. 87: * 88: * Accuracy: 89: * trig(x) returns the exact trig(x*pi/PI) nearly rounded, where 90: * 91: * Decimal: 92: * pi = 3.141592653589793 23846264338327 ..... 93: * 53 bits PI = 3.141592653589793 115997963 ..... , 94: * 56 bits PI = 3.141592653589793 227020265 ..... , 95: * 96: * Hexadecimal: 97: * pi = 3.243F6A8885A308D313198A2E.... 98: * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 error=.276ulps 99: * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 error=.206ulps 100: * 101: * In a test run with 1,024,000 random arguments on a VAX, the maximum 102: * observed errors (compared with the exact trig(x*pi/PI)) were 103: * tan(x) : 2.09 ulps (around 4.716340404662354) 104: * sin(x) : .861 ulps 105: * cos(x) : .857 ulps 106: * 107: * Constants: 108: * The hexadecimal values are the intended ones for the following constants. 109: * The decimal values may be used, provided that the compiler will convert 110: * from decimal to binary accurately enough to produce the hexadecimal values 111: * shown. 112: */ 113: 114: #ifdef VAX 115: /*thresh = 2.6117239648121182150E-1 , Hex 2^ -1 * .85B8636B026EA0 */ 116: /*PIo4 = 7.8539816339744830676E-1 , Hex 2^ 0 * .C90FDAA22168C2 */ 117: /*PIo2 = 1.5707963267948966135E0 , Hex 2^ 1 * .C90FDAA22168C2 */ 118: /*PI3o4 = 2.3561944901923449203E0 , Hex 2^ 2 * .96CBE3F9990E92 */ 119: /*PI = 3.1415926535897932270E0 , Hex 2^ 2 * .C90FDAA22168C2 */ 120: /*PI2 = 6.2831853071795864540E0 ; Hex 2^ 3 * .C90FDAA22168C2 */ 121: static long threshx[] = { 0xb8633f85, 0x6ea06b02}; 122: #define thresh (*(double*)threshx) 123: static long PIo4x[] = { 0x0fda4049, 0x68c2a221}; 124: #define PIo4 (*(double*)PIo4x) 125: static long PIo2x[] = { 0x0fda40c9, 0x68c2a221}; 126: #define PIo2 (*(double*)PIo2x) 127: static long PI3o4x[] = { 0xcbe34116, 0x0e92f999}; 128: #define PI3o4 (*(double*)PI3o4x) 129: static long PIx[] = { 0x0fda4149, 0x68c2a221}; 130: #define PI (*(double*)PIx) 131: static long PI2x[] = { 0x0fda41c9, 0x68c2a221}; 132: #define PI2 (*(double*)PI2x) 133: #else /* IEEE double */ 134: static double 135: thresh = 2.6117239648121182150E-1 , /*Hex 2^ -2 * 1.0B70C6D604DD4 */ 136: PIo4 = 7.8539816339744827900E-1 , /*Hex 2^ -1 * 1.921FB54442D18 */ 137: PIo2 = 1.5707963267948965580E0 , /*Hex 2^ 0 * 1.921FB54442D18 */ 138: PI3o4 = 2.3561944901923448370E0 , /*Hex 2^ 1 * 1.2D97C7F3321D2 */ 139: PI = 3.1415926535897931160E0 , /*Hex 2^ 1 * 1.921FB54442D18 */ 140: PI2 = 6.2831853071795862320E0 ; /*Hex 2^ 2 * 1.921FB54442D18 */ 141: #endif 142: static double zero=0, one=1, negone= -1, half=1.0/2.0, 143: small=1E-10, /* 1+small**2==1; better values for small: 144: small = 1.5E-9 for VAX D 145: = 1.2E-8 for IEEE Double 146: = 2.8E-10 for IEEE Extended */ 147: big=1E20; /* big = 1/(small**2) */ 148: 149: double tan(x) 150: double x; 151: { 152: double copysign(),drem(),cos__C(),sin__S(),a,z,ss,cc,c; 153: int finite(),k; 154: 155: /* tan(NaN) and tan(INF) must be NaN */ 156: if(!finite(x)) return(x-x); 157: x=drem(x,PI); /* reduce x into [-PI/2, PI/2] */ 158: a=copysign(x,one); /* ... = abs(x) */ 159: if ( a >= PIo4 ) {k=1; x = copysign( PIo2 - a , x ); } 160: else { k=0; if(a < small ) { big + a; return(x); }} 161: 162: z = x*x; 163: cc = cos__C(z); 164: ss = sin__S(z); 165: z = z*half ; /* Next get c = cos(x) accurately */ 166: c = (z >= thresh )? half-((z-half)-cc) : one-(z-cc); 167: if (k==0) return ( x + (x*(z-(cc-ss)))/c ); /* sin/cos */ 168: return( c/(x+x*ss) ); /* ... cos/sin */ 169: 170: 171: } 172: double sin(x) 173: double x; 174: { 175: double copysign(),drem(),sin__S(),cos__C(),a,c,z; 176: int finite(); 177: 178: /* sin(NaN) and sin(INF) must be NaN */ 179: if(!finite(x)) return(x-x); 180: x=drem(x,PI2); /* reduce x into [-PI, PI] */ 181: a=copysign(x,one); 182: if( a >= PIo4 ) { 183: if( a >= PI3o4 ) /* .. in [3PI/4, PI ] */ 184: x=copysign((a=PI-a),x); 185: 186: else { /* .. in [PI/4, 3PI/4] */ 187: a=PIo2-a; /* return sign(x)*C(PI/2-|x|) */ 188: z=a*a; 189: c=cos__C(z); 190: z=z*half; 191: a=(z>=thresh)?half-((z-half)-c):one-(z-c); 192: return(copysign(a,x)); 193: } 194: } 195: 196: /* return S(x) */ 197: if( a < small) { big + a; return(x);} 198: return(x+x*sin__S(x*x)); 199: } 200: 201: double cos(x) 202: double x; 203: { 204: double copysign(),drem(),sin__S(),cos__C(),a,c,z,s=1.0; 205: int finite(); 206: 207: /* cos(NaN) and cos(INF) must be NaN */ 208: if(!finite(x)) return(x-x); 209: x=drem(x,PI2); /* reduce x into [-PI, PI] */ 210: a=copysign(x,one); 211: if ( a >= PIo4 ) { 212: if ( a >= PI3o4 ) /* .. in [3PI/4, PI ] */ 213: { a=PI-a; s= negone; } 214: 215: else /* .. in [PI/4, 3PI/4] */ 216: /* return S(PI/2-|x|) */ 217: { a=PIo2-a; return(a+a*sin__S(a*a));} 218: } 219: 220: 221: /* return s*C(a) */ 222: if( a < small) { big + a; return(s);} 223: z=a*a; 224: c=cos__C(z); 225: z=z*half; 226: a=(z>=thresh)?half-((z-half)-c):one-(z-c); 227: return(copysign(a,s)); 228: } 229: 230: 231: /* sin__S(x*x) 232: * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 233: * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X) 234: * CODED IN C BY K.C. NG, 1/21/85; 235: * REVISED BY K.C. NG on 8/13/85. 236: * 237: * sin(x*k) - x 238: * RETURN --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded 239: * x 240: * value of pi in machine precision: 241: * 242: * Decimal: 243: * pi = 3.141592653589793 23846264338327 ..... 244: * 53 bits PI = 3.141592653589793 115997963 ..... , 245: * 56 bits PI = 3.141592653589793 227020265 ..... , 246: * 247: * Hexadecimal: 248: * pi = 3.243F6A8885A308D313198A2E.... 249: * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 250: * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 251: * 252: * Method: 253: * 1. Let z=x*x. Create a polynomial approximation to 254: * (sin(k*x)-x)/x = z*(S0 + S1*z^1 + ... + S5*z^5). 255: * Then 256: * sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5) 257: * 258: * The coefficient S's are obtained by a special Remez algorithm. 259: * 260: * Accuracy: 261: * In the absence of rounding error, the approximation has absolute error 262: * less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE. 263: * 264: * Constants: 265: * The hexadecimal values are the intended ones for the following constants. 266: * The decimal values may be used, provided that the compiler will convert 267: * from decimal to binary accurately enough to produce the hexadecimal values 268: * shown. 269: * 270: */ 271: 272: #ifdef VAX 273: /*S0 = -1.6666666666666646660E-1 , Hex 2^ -2 * -.AAAAAAAAAAAA71 */ 274: /*S1 = 8.3333333333297230413E-3 , Hex 2^ -6 * .8888888888477F */ 275: /*S2 = -1.9841269838362403710E-4 , Hex 2^-12 * -.D00D00CF8A1057 */ 276: /*S3 = 2.7557318019967078930E-6 , Hex 2^-18 * .B8EF1CA326BEDC */ 277: /*S4 = -2.5051841873876551398E-8 , Hex 2^-25 * -.D73195374CE1D3 */ 278: /*S5 = 1.6028995389845827653E-10 , Hex 2^-32 * .B03D9C6D26CCCC */ 279: /*S6 = -6.2723499671769283121E-13 ; Hex 2^-40 * -.B08D0B7561EA82 */ 280: static long S0x[] = { 0xaaaabf2a, 0xaa71aaaa}; 281: #define S0 (*(double*)S0x) 282: static long S1x[] = { 0x88883d08, 0x477f8888}; 283: #define S1 (*(double*)S1x) 284: static long S2x[] = { 0x0d00ba50, 0x1057cf8a}; 285: #define S2 (*(double*)S2x) 286: static long S3x[] = { 0xef1c3738, 0xbedca326}; 287: #define S3 (*(double*)S3x) 288: static long S4x[] = { 0x3195b3d7, 0xe1d3374c}; 289: #define S4 (*(double*)S4x) 290: static long S5x[] = { 0x3d9c3030, 0xcccc6d26}; 291: #define S5 (*(double*)S5x) 292: static long S6x[] = { 0x8d0bac30, 0xea827561}; 293: #define S6 (*(double*)S6x) 294: #else /* IEEE double */ 295: static double 296: S0 = -1.6666666666666463126E-1 , /*Hex 2^ -3 * -1.555555555550C */ 297: S1 = 8.3333333332992771264E-3 , /*Hex 2^ -7 * 1.111111110C461 */ 298: S2 = -1.9841269816180999116E-4 , /*Hex 2^-13 * -1.A01A019746345 */ 299: S3 = 2.7557309793219876880E-6 , /*Hex 2^-19 * 1.71DE3209CDCD9 */ 300: S4 = -2.5050225177523807003E-8 , /*Hex 2^-26 * -1.AE5C0E319A4EF */ 301: S5 = 1.5868926979889205164E-10 ; /*Hex 2^-33 * 1.5CF61DF672B13 */ 302: #endif 303: 304: static double sin__S(z) 305: double z; 306: { 307: #ifdef VAX 308: return(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6))))))); 309: #else /* IEEE double */ 310: return(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5)))))); 311: #endif 312: } 313: 314: 315: /* cos__C(x*x) 316: * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS) 317: * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X) 318: * CODED IN C BY K.C. NG, 1/21/85; 319: * REVISED BY K.C. NG on 8/13/85. 320: * 321: * x*x 322: * RETURN cos(k*x) - 1 + ----- on [-PI/4,PI/4], where k = pi/PI, 323: * 2 324: * PI is the rounded value of pi in machine precision : 325: * 326: * Decimal: 327: * pi = 3.141592653589793 23846264338327 ..... 328: * 53 bits PI = 3.141592653589793 115997963 ..... , 329: * 56 bits PI = 3.141592653589793 227020265 ..... , 330: * 331: * Hexadecimal: 332: * pi = 3.243F6A8885A308D313198A2E.... 333: * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 334: * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 335: * 336: * 337: * Method: 338: * 1. Let z=x*x. Create a polynomial approximation to 339: * cos(k*x)-1+z/2 = z*z*(C0 + C1*z^1 + ... + C5*z^5) 340: * then 341: * cos__C(z) = z*z*(C0 + C1*z^1 + ... + C5*z^5) 342: * 343: * The coefficient C's are obtained by a special Remez algorithm. 344: * 345: * Accuracy: 346: * In the absence of rounding error, the approximation has absolute error 347: * less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE. 348: * 349: * 350: * Constants: 351: * The hexadecimal values are the intended ones for the following constants. 352: * The decimal values may be used, provided that the compiler will convert 353: * from decimal to binary accurately enough to produce the hexadecimal values 354: * shown. 355: * 356: */ 357: 358: #ifdef VAX 359: /*C0 = 4.1666666666666504759E-2 , Hex 2^ -4 * .AAAAAAAAAAA9F0 */ 360: /*C1 = -1.3888888888865302059E-3 , Hex 2^ -9 * -.B60B60B60A0CCA */ 361: /*C2 = 2.4801587285601038265E-5 , Hex 2^-15 * .D00D00CDCD098F */ 362: /*C3 = -2.7557313470902390219E-7 , Hex 2^-21 * -.93F27BB593E805 */ 363: /*C4 = 2.0875623401082232009E-9 , Hex 2^-28 * .8F74C8FA1E3FF0 */ 364: /*C5 = -1.1355178117642986178E-11 ; Hex 2^-36 * -.C7C32D0A5C5A63 */ 365: static long C0x[] = { 0xaaaa3e2a, 0xa9f0aaaa}; 366: #define C0 (*(double*)C0x) 367: static long C1x[] = { 0x0b60bbb6, 0x0ccab60a}; 368: #define C1 (*(double*)C1x) 369: static long C2x[] = { 0x0d0038d0, 0x098fcdcd}; 370: #define C2 (*(double*)C2x) 371: static long C3x[] = { 0xf27bb593, 0xe805b593}; 372: #define C3 (*(double*)C3x) 373: static long C4x[] = { 0x74c8320f, 0x3ff0fa1e}; 374: #define C4 (*(double*)C4x) 375: static long C5x[] = { 0xc32dae47, 0x5a630a5c}; 376: #define C5 (*(double*)C5x) 377: #else /* IEEE double */ 378: static double 379: C0 = 4.1666666666666504759E-2 , /*Hex 2^ -5 * 1.555555555553E */ 380: C1 = -1.3888888888865301516E-3 , /*Hex 2^-10 * -1.6C16C16C14199 */ 381: C2 = 2.4801587269650015769E-5 , /*Hex 2^-16 * 1.A01A01971CAEB */ 382: C3 = -2.7557304623183959811E-7 , /*Hex 2^-22 * -1.27E4F1314AD1A */ 383: C4 = 2.0873958177697780076E-9 , /*Hex 2^-29 * 1.1EE3B60DDDC8C */ 384: C5 = -1.1250289076471311557E-11 ; /*Hex 2^-37 * -1.8BD5986B2A52E */ 385: #endif 386: 387: static double cos__C(z) 388: double z; 389: { 390: return(z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5)))))); 391: }