1: /* 2: * Copyright (c) 1985 Regents of the University of California. 3: * 4: * Use and reproduction of this software are granted in accordance with 5: * the terms and conditions specified in the Berkeley Software License 6: * Agreement (in particular, this entails acknowledgement of the programs' 7: * source, and inclusion of this notice) with the additional understanding 8: * that all recipients should regard themselves as participants in an 9: * ongoing research project and hence should feel obligated to report 10: * their experiences (good or bad) with these elementary function codes, 11: * using "sendbug 4bsd-bugs@BERKELEY", to the authors. 12: */ 13: 14: #ifndef lint 15: static char sccsid[] = "@(#)expm1.c 1.2 (Berkeley) 8/21/85"; 16: #endif not lint 17: 18: /* EXPM1(X) 19: * RETURN THE EXPONENTIAL OF X MINUS ONE 20: * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS) 21: * CODED IN C BY K.C. NG, 1/19/85; 22: * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85. 23: * 24: * Required system supported functions: 25: * scalb(x,n) 26: * copysign(x,y) 27: * finite(x) 28: * 29: * Kernel function: 30: * exp__E(x,c) 31: * 32: * Method: 33: * 1. Argument Reduction: given the input x, find r and integer k such 34: * that 35: * x = k*ln2 + r, |r| <= 0.5*ln2 . 36: * r will be represented as r := z+c for better accuracy. 37: * 38: * 2. Compute EXPM1(r)=exp(r)-1 by 39: * 40: * EXPM1(r=z+c) := z + exp__E(z,c) 41: * 42: * 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ). 43: * 44: * Remarks: 45: * 1. When k=1 and z < -0.25, we use the following formula for 46: * better accuracy: 47: * EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) ) 48: * 2. To avoid rounding error in 1-2^-k where k is large, we use 49: * EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 } 50: * when k>56. 51: * 52: * Special cases: 53: * EXPM1(INF) is INF, EXPM1(NaN) is NaN; 54: * EXPM1(-INF)= -1; 55: * for finite argument, only EXPM1(0)=0 is exact. 56: * 57: * Accuracy: 58: * EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with 59: * 1,166,000 random arguments on a VAX, the maximum observed error was 60: * .872 ulps (units of the last place). 61: * 62: * Constants: 63: * The hexadecimal values are the intended ones for the following constants. 64: * The decimal values may be used, provided that the compiler will convert 65: * from decimal to binary accurately enough to produce the hexadecimal values 66: * shown. 67: */ 68: 69: #ifdef VAX /* VAX D format */ 70: /* double static */ 71: /* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */ 72: /* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */ 73: /* lnhuge = 9.4961163736712506989E1 , Hex 2^ 7 * .BDEC1DA73E9010 */ 74: /* invln2 = 1.4426950408889634148E0 ; Hex 2^ 1 * .B8AA3B295C17F1 */ 75: static long ln2hix[] = { 0x72174031, 0x0000f7d0}; 76: static long ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1}; 77: static long lnhugex[] = { 0xec1d43bd, 0x9010a73e}; 78: static long invln2x[] = { 0xaa3b40b8, 0x17f1295c}; 79: #define ln2hi (*(double*)ln2hix) 80: #define ln2lo (*(double*)ln2lox) 81: #define lnhuge (*(double*)lnhugex) 82: #define invln2 (*(double*)invln2x) 83: #else /* IEEE double */ 84: double static 85: ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */ 86: ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */ 87: lnhuge = 7.1602103751842355450E2 , /*Hex 2^ 9 * 1.6602B15B7ECF2 */ 88: invln2 = 1.4426950408889633870E0 ; /*Hex 2^ 0 * 1.71547652B82FE */ 89: #endif 90: 91: double expm1(x) 92: double x; 93: { 94: double static one=1.0, half=1.0/2.0; 95: double scalb(), copysign(), exp__E(), z,hi,lo,c; 96: int k,finite(); 97: #ifdef VAX 98: static prec=56; 99: #else /* IEEE double */ 100: static prec=53; 101: #endif 102: #ifndef VAX 103: if(x!=x) return(x); /* x is NaN */ 104: #endif 105: 106: if( x <= lnhuge ) { 107: if( x >= -40.0 ) { 108: 109: /* argument reduction : x - k*ln2 */ 110: k= invln2 *x+copysign(0.5,x); /* k=NINT(x/ln2) */ 111: hi=x-k*ln2hi ; 112: z=hi-(lo=k*ln2lo); 113: c=(hi-z)-lo; 114: 115: if(k==0) return(z+exp__E(z,c)); 116: if(k==1) 117: if(z< -0.25) 118: {x=z+half;x +=exp__E(z,c); return(x+x);} 119: else 120: {z+=exp__E(z,c); x=half+z; return(x+x);} 121: /* end of k=1 */ 122: 123: else { 124: if(k<=prec) 125: { x=one-scalb(one,-k); z += exp__E(z,c);} 126: else if(k<100) 127: { x = exp__E(z,c)-scalb(one,-k); x+=z; z=one;} 128: else 129: { x = exp__E(z,c)+z; z=one;} 130: 131: return (scalb(x+z,k)); 132: } 133: } 134: /* end of x > lnunfl */ 135: 136: else 137: /* expm1(-big#) rounded to -1 (inexact) */ 138: if(finite(x)) 139: { ln2hi+ln2lo; return(-one);} 140: 141: /* expm1(-INF) is -1 */ 142: else return(-one); 143: } 144: /* end of x < lnhuge */ 145: 146: else 147: /* expm1(INF) is INF, expm1(+big#) overflows to INF */ 148: return( finite(x) ? scalb(one,5000) : x); 149: }