1: /*
2: * Copyright (c) 1985 Regents of the University of California.
3: *
4: * Use and reproduction of this software are granted in accordance with
5: * the terms and conditions specified in the Berkeley Software License
6: * Agreement (in particular, this entails acknowledgement of the programs'
7: * source, and inclusion of this notice) with the additional understanding
8: * that all recipients should regard themselves as participants in an
9: * ongoing research project and hence should feel obligated to report
10: * their experiences (good or bad) with these elementary function codes,
11: * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12: */
13:
14: #ifndef lint
15: static char sccsid[] = "@(#)sinh.c 4.3 (Berkeley) 8/21/85";
16: #endif not lint
17:
18: /* SINH(X)
19: * RETURN THE HYPERBOLIC SINE OF X
20: * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
21: * CODED IN C BY K.C. NG, 1/8/85;
22: * REVISED BY K.C. NG on 2/8/85, 3/7/85, 3/24/85, 4/16/85.
23: *
24: * Required system supported functions :
25: * copysign(x,y)
26: * scalb(x,N)
27: *
28: * Required kernel functions:
29: * expm1(x) ...return exp(x)-1
30: *
31: * Method :
32: * 1. reduce x to non-negative by sinh(-x) = - sinh(x).
33: * 2.
34: *
35: * expm1(x) + expm1(x)/(expm1(x)+1)
36: * 0 <= x <= lnovfl : sinh(x) := --------------------------------
37: * 2
38: * lnovfl <= x <= lnovfl+ln2 : sinh(x) := expm1(x)/2 (avoid overflow)
39: * lnovfl+ln2 < x < INF : overflow to INF
40: *
41: *
42: * Special cases:
43: * sinh(x) is x if x is +INF, -INF, or NaN.
44: * only sinh(0)=0 is exact for finite argument.
45: *
46: * Accuracy:
47: * sinh(x) returns the exact hyperbolic sine of x nearly rounded. In
48: * a test run with 1,024,000 random arguments on a VAX, the maximum
49: * observed error was 1.93 ulps (units in the last place).
50: *
51: * Constants:
52: * The hexadecimal values are the intended ones for the following constants.
53: * The decimal values may be used, provided that the compiler will convert
54: * from decimal to binary accurately enough to produce the hexadecimal values
55: * shown.
56: */
57: #ifdef VAX
58: /* double static */
59: /* mln2hi = 8.8029691931113054792E1 , Hex 2^ 7 * .B00F33C7E22BDB */
60: /* mln2lo = -4.9650192275318476525E-16 , Hex 2^-50 * -.8F1B60279E582A */
61: /* lnovfl = 8.8029691931113053016E1 ; Hex 2^ 7 * .B00F33C7E22BDA */
62: static long mln2hix[] = { 0x0f3343b0, 0x2bdbc7e2};
63: static long mln2lox[] = { 0x1b60a70f, 0x582a279e};
64: static long lnovflx[] = { 0x0f3343b0, 0x2bdac7e2};
65: #define mln2hi (*(double*)mln2hix)
66: #define mln2lo (*(double*)mln2lox)
67: #define lnovfl (*(double*)lnovflx)
68: #else /* IEEE double */
69: double static
70: mln2hi = 7.0978271289338397310E2 , /*Hex 2^ 10 * 1.62E42FEFA39EF */
71: mln2lo = 2.3747039373786107478E-14 , /*Hex 2^-45 * 1.ABC9E3B39803F */
72: lnovfl = 7.0978271289338397310E2 ; /*Hex 2^ 9 * 1.62E42FEFA39EF */
73: #endif
74:
75: #ifdef VAX
76: static max = 126 ;
77: #else /* IEEE double */
78: static max = 1023 ;
79: #endif
80:
81:
82: double sinh(x)
83: double x;
84: {
85: static double one=1.0, half=1.0/2.0 ;
86: double expm1(), t, scalb(), copysign(), sign;
87: #ifndef VAX
88: if(x!=x) return(x); /* x is NaN */
89: #endif
90: sign=copysign(one,x);
91: x=copysign(x,one);
92: if(x<lnovfl)
93: {t=expm1(x); return(copysign((t+t/(one+t))*half,sign));}
94:
95: else if(x <= lnovfl+0.7)
96: /* subtract x by ln(2^(max+1)) and return 2^max*exp(x)
97: to avoid unnecessary overflow */
98: return(copysign(scalb(one+expm1((x-mln2hi)-mln2lo),max),sign));
99:
100: else /* sinh(+-INF) = +-INF, sinh(+-big no.) overflow to +-INF */
101: return( expm1(x)*sign );
102: }
Defined functions
sinh
defined in line
82;
never used
Defined variables
Defined macros