1: /*
2: * Copyright (c) 1984, 1985, 1986, 1987 Regents of the University of California.
3: * All rights reserved.
4: *
5: * Redistribution and use in source and binary forms are permitted
6: * provided that this notice is preserved and that due credit is given
7: * to the University of California at Berkeley. The name of the University
8: * may not be used to endorse or promote products derived from this
9: * software without specific prior written permission. This software
10: * is provided ``as is'' without express or implied warranty.
11: *
12: * @(#)spp_usrreq.c 7.6 (Berkeley) 3/12/88
13: */
14:
15: #include "param.h"
16: #ifdef NS
17: #include "systm.h"
18: #include "user.h"
19: #include "mbuf.h"
20: #include "protosw.h"
21: #include "socket.h"
22: #include "socketvar.h"
23: #include "errno.h"
24:
25: #include "../net/if.h"
26: #include "../net/route.h"
27: #include "../netinet/tcp_fsm.h"
28:
29: #include "ns.h"
30: #include "ns_pcb.h"
31: #include "idp.h"
32: #include "idp_var.h"
33: #include "ns_error.h"
34: #include "sp.h"
35: #include "spidp.h"
36: #include "spp_timer.h"
37: #include "spp_var.h"
38: #include "spp_debug.h"
39:
40: /*
41: * SP protocol implementation.
42: */
43: spp_init()
44: {
45:
46: spp_iss = 1; /* WRONG !! should fish it out of TODR */
47: }
48: struct spidp spp_savesi;
49: int traceallspps = 0;
50: extern int sppconsdebug;
51: int spp_hardnosed;
52: int spp_use_delack = 0;
53:
54: /*ARGSUSED*/
55: spp_input(m, nsp, ifp)
56: register struct mbuf *m;
57: register struct nspcb *nsp;
58: struct ifnet *ifp;
59: {
60: register struct sppcb *cb;
61: register struct spidp *si = mtod(m, struct spidp *);
62: register struct socket *so;
63: short ostate;
64: int dropsocket = 0;
65:
66:
67: sppstat.spps_rcvtotal++;
68: if (nsp == 0) {
69: panic("No nspcb in spp_input\n");
70: return;
71: }
72:
73: cb = nstosppcb(nsp);
74: if (cb == 0) goto bad;
75:
76: if (m->m_len < sizeof(*si)) {
77: if ((m = m_pullup(m, sizeof(*si))) == 0) {
78: sppstat.spps_rcvshort++;
79: return;
80: }
81: si = mtod(m, struct spidp *);
82: }
83: si->si_seq = ntohs(si->si_seq);
84: si->si_ack = ntohs(si->si_ack);
85: si->si_alo = ntohs(si->si_alo);
86:
87: so = nsp->nsp_socket;
88: if (so->so_options & SO_DEBUG || traceallspps) {
89: ostate = cb->s_state;
90: spp_savesi = *si;
91: }
92: if (so->so_options & SO_ACCEPTCONN) {
93: struct sppcb *ocb = cb;
94: struct socket *oso = so;
95: so = sonewconn(so);
96: if (so == 0) {
97: goto drop;
98: }
99: /*
100: * This is ugly, but ....
101: *
102: * Mark socket as temporary until we're
103: * committed to keeping it. The code at
104: * ``drop'' and ``dropwithreset'' check the
105: * flag dropsocket to see if the temporary
106: * socket created here should be discarded.
107: * We mark the socket as discardable until
108: * we're committed to it below in TCPS_LISTEN.
109: */
110: dropsocket++;
111: nsp = (struct nspcb *)so->so_pcb;
112: nsp->nsp_laddr = si->si_dna;
113: cb = nstosppcb(nsp);
114: cb->s_mtu = ocb->s_mtu; /* preserve sockopts */
115: cb->s_flags = ocb->s_flags; /* preserve sockopts */
116: if (so->so_snd.sb_hiwat != oso->so_snd.sb_hiwat) /*XXX*/
117: sbreserve(&so->so_snd, oso->so_snd.sb_hiwat);
118: if (so->so_rcv.sb_hiwat != oso->so_rcv.sb_hiwat) /*XXX*/
119: sbreserve(&so->so_rcv, oso->so_rcv.sb_hiwat);
120: cb->s_state = TCPS_LISTEN;
121: }
122:
123: /*
124: * Packet received on connection.
125: * reset idle time and keep-alive timer;
126: */
127: cb->s_idle = 0;
128: cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
129:
130: switch (cb->s_state) {
131:
132: case TCPS_LISTEN:{
133: struct mbuf *am;
134: register struct sockaddr_ns *sns;
135: struct ns_addr laddr;
136:
137: /*
138: * If somebody here was carying on a conversation
139: * and went away, and his pen pal thinks he can
140: * still talk, we get the misdirected packet.
141: */
142: if (spp_hardnosed && (si->si_did != 0 || si->si_seq != 0)) {
143: spp_istat.gonawy++;
144: goto dropwithreset;
145: }
146: am = m_get(M_DONTWAIT, MT_SONAME);
147: if (am == NULL)
148: goto drop;
149: am->m_len = sizeof (struct sockaddr_ns);
150: sns = mtod(am, struct sockaddr_ns *);
151: sns->sns_family = AF_NS;
152: sns->sns_addr = si->si_sna;
153: laddr = nsp->nsp_laddr;
154: if (ns_nullhost(laddr))
155: nsp->nsp_laddr = si->si_dna;
156: if (ns_pcbconnect(nsp, am)) {
157: nsp->nsp_laddr = laddr;
158: (void) m_free(am);
159: spp_istat.noconn++;
160: goto drop;
161: }
162: (void) m_free(am);
163: spp_template(cb);
164: dropsocket = 0; /* committed to socket */
165: cb->s_did = si->si_sid;
166: cb->s_rack = si->si_ack;
167: cb->s_ralo = si->si_alo;
168: #define THREEWAYSHAKE
169: #ifdef THREEWAYSHAKE
170: cb->s_state = TCPS_SYN_RECEIVED;
171: cb->s_force = 1 + SPPT_KEEP;
172: sppstat.spps_accepts++;
173: cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
174: }
175: break;
176: /*
177: * This state means that we have heard a response
178: * to our acceptance of their connection
179: * It is probably logically unnecessary in this
180: * implementation.
181: */
182: case TCPS_SYN_RECEIVED: {
183: if (si->si_did!=cb->s_sid) {
184: spp_istat.wrncon++;
185: goto drop;
186: }
187: #endif
188: nsp->nsp_fport = si->si_sport;
189: cb->s_timer[SPPT_REXMT] = 0;
190: cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
191: soisconnected(so);
192: cb->s_state = TCPS_ESTABLISHED;
193: sppstat.spps_accepts++;
194: }
195: break;
196:
197: /*
198: * This state means that we have gotten a response
199: * to our attempt to establish a connection.
200: * We fill in the data from the other side,
201: * telling us which port to respond to, instead of the well-
202: * known one we might have sent to in the first place.
203: * We also require that this is a response to our
204: * connection id.
205: */
206: case TCPS_SYN_SENT:
207: if (si->si_did!=cb->s_sid) {
208: spp_istat.notme++;
209: goto drop;
210: }
211: sppstat.spps_connects++;
212: cb->s_did = si->si_sid;
213: cb->s_rack = si->si_ack;
214: cb->s_ralo = si->si_alo;
215: cb->s_dport = nsp->nsp_fport = si->si_sport;
216: cb->s_timer[SPPT_REXMT] = 0;
217: cb->s_flags |= SF_ACKNOW;
218: soisconnected(so);
219: cb->s_state = TCPS_ESTABLISHED;
220: /* Use roundtrip time of connection request for initial rtt */
221: if (cb->s_rtt) {
222: cb->s_srtt = cb->s_rtt << 3;
223: cb->s_rttvar = cb->s_rtt << 1;
224: SPPT_RANGESET(cb->s_rxtcur,
225: ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1,
226: SPPTV_MIN, SPPTV_REXMTMAX);
227: cb->s_rtt = 0;
228: }
229: }
230: if (so->so_options & SO_DEBUG || traceallspps)
231: spp_trace(SA_INPUT, (u_char)ostate, cb, &spp_savesi, 0);
232:
233: m->m_len -= sizeof (struct idp);
234: m->m_off += sizeof (struct idp);
235:
236: if (spp_reass(cb, si)) {
237: (void) m_freem(m);
238: }
239: if (cb->s_force || (cb->s_flags & (SF_ACKNOW|SF_WIN|SF_RXT)))
240: (void) spp_output(cb, (struct mbuf *)0);
241: cb->s_flags &= ~(SF_WIN|SF_RXT);
242: return;
243:
244: dropwithreset:
245: if (dropsocket)
246: (void) soabort(so);
247: si->si_seq = ntohs(si->si_seq);
248: si->si_ack = ntohs(si->si_ack);
249: si->si_alo = ntohs(si->si_alo);
250: ns_error(dtom(si), NS_ERR_NOSOCK, 0);
251: if (cb->s_nspcb->nsp_socket->so_options & SO_DEBUG || traceallspps)
252: spp_trace(SA_DROP, (u_char)ostate, cb, &spp_savesi, 0);
253: return;
254:
255: drop:
256: bad:
257: if (cb == 0 || cb->s_nspcb->nsp_socket->so_options & SO_DEBUG ||
258: traceallspps)
259: spp_trace(SA_DROP, (u_char)ostate, cb, &spp_savesi, 0);
260: m_freem(m);
261: }
262:
263: int spprexmtthresh = 3;
264:
265: /*
266: * This is structurally similar to the tcp reassembly routine
267: * but its function is somewhat different: It merely queues
268: * packets up, and suppresses duplicates.
269: */
270: spp_reass(cb, si)
271: register struct sppcb *cb;
272: register struct spidp *si;
273: {
274: register struct spidp_q *q;
275: register struct mbuf *m;
276: register struct socket *so = cb->s_nspcb->nsp_socket;
277: char packetp = cb->s_flags & SF_HI;
278: int incr;
279: char wakeup = 0;
280:
281: if (si == SI(0))
282: goto present;
283: /*
284: * Update our news from them.
285: */
286: if (si->si_cc & SP_SA)
287: cb->s_flags |= (spp_use_delack ? SF_DELACK : SF_ACKNOW);
288: if (SSEQ_GT(si->si_alo, cb->s_ralo))
289: cb->s_flags |= SF_WIN;
290: if (SSEQ_LEQ(si->si_ack, cb->s_rack)) {
291: if ((si->si_cc & SP_SP) && cb->s_rack != (cb->s_smax + 1)) {
292: sppstat.spps_rcvdupack++;
293: /*
294: * If this is a completely duplicate ack
295: * and other conditions hold, we assume
296: * a packet has been dropped and retransmit
297: * it exactly as in tcp_input().
298: */
299: if (si->si_ack != cb->s_rack ||
300: si->si_alo != cb->s_ralo)
301: cb->s_dupacks = 0;
302: else if (++cb->s_dupacks == spprexmtthresh) {
303: u_short onxt = cb->s_snxt;
304: int cwnd = cb->s_cwnd;
305:
306: cb->s_snxt = si->si_ack;
307: cb->s_cwnd = CUNIT;
308: cb->s_force = 1 + SPPT_REXMT;
309: (void) spp_output(cb, (struct mbuf *)0);
310: cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
311: cb->s_rtt = 0;
312: if (cwnd >= 4 * CUNIT)
313: cb->s_cwnd = cwnd / 2;
314: if (SSEQ_GT(onxt, cb->s_snxt))
315: cb->s_snxt = onxt;
316: return (1);
317: }
318: } else
319: cb->s_dupacks = 0;
320: goto update_window;
321: }
322: cb->s_dupacks = 0;
323: /*
324: * If our correspondent acknowledges data we haven't sent
325: * TCP would drop the packet after acking. We'll be a little
326: * more permissive
327: */
328: if (SSEQ_GT(si->si_ack, (cb->s_smax + 1))) {
329: sppstat.spps_rcvacktoomuch++;
330: si->si_ack = cb->s_smax + 1;
331: }
332: sppstat.spps_rcvackpack++;
333: /*
334: * If transmit timer is running and timed sequence
335: * number was acked, update smoothed round trip time.
336: * See discussion of algorithm in tcp_input.c
337: */
338: if (cb->s_rtt && SSEQ_GT(si->si_ack, cb->s_rtseq)) {
339: sppstat.spps_rttupdated++;
340: if (cb->s_srtt != 0) {
341: register short delta;
342: delta = cb->s_rtt - (cb->s_srtt >> 3);
343: if ((cb->s_srtt += delta) <= 0)
344: cb->s_srtt = 1;
345: if (delta < 0)
346: delta = -delta;
347: delta -= (cb->s_rttvar >> 2);
348: if ((cb->s_rttvar += delta) <= 0)
349: cb->s_rttvar = 1;
350: } else {
351: /*
352: * No rtt measurement yet
353: */
354: cb->s_srtt = cb->s_rtt << 3;
355: cb->s_rttvar = cb->s_rtt << 1;
356: }
357: cb->s_rtt = 0;
358: cb->s_rxtshift = 0;
359: SPPT_RANGESET(cb->s_rxtcur,
360: ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1,
361: SPPTV_MIN, SPPTV_REXMTMAX);
362: }
363: /*
364: * If all outstanding data is acked, stop retransmit
365: * timer and remember to restart (more output or persist).
366: * If there is more data to be acked, restart retransmit
367: * timer, using current (possibly backed-off) value;
368: */
369: if (si->si_ack == cb->s_smax + 1) {
370: cb->s_timer[SPPT_REXMT] = 0;
371: cb->s_flags |= SF_RXT;
372: } else if (cb->s_timer[SPPT_PERSIST] == 0)
373: cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
374: /*
375: * When new data is acked, open the congestion window.
376: * If the window gives us less than ssthresh packets
377: * in flight, open exponentially (maxseg at a time).
378: * Otherwise open linearly (maxseg^2 / cwnd at a time).
379: */
380: incr = CUNIT;
381: if (cb->s_cwnd > cb->s_ssthresh)
382: incr = MAX(incr * incr / cb->s_cwnd, 1);
383: cb->s_cwnd = MIN(cb->s_cwnd + incr, cb->s_cwmx);
384: /*
385: * Trim Acked data from output queue.
386: */
387: while ((m = so->so_snd.sb_mb) != NULL) {
388: if (SSEQ_LT((mtod(m, struct spidp *))->si_seq, si->si_ack))
389: sbdroprecord(&so->so_snd);
390: else
391: break;
392: }
393: if ((so->so_snd.sb_flags & SB_WAIT) || so->so_snd.sb_sel)
394: sowwakeup(so);
395: cb->s_rack = si->si_ack;
396: update_window:
397: if (SSEQ_LT(cb->s_snxt, cb->s_rack))
398: cb->s_snxt = cb->s_rack;
399: if (SSEQ_LT(cb->s_swl1, si->si_seq) || cb->s_swl1 == si->si_seq &&
400: (SSEQ_LT(cb->s_swl2, si->si_ack) ||
401: cb->s_swl2 == si->si_ack && SSEQ_LT(cb->s_ralo, si->si_alo))) {
402: /* keep track of pure window updates */
403: if ((si->si_cc & SP_SP) && cb->s_swl2 == si->si_ack
404: && SSEQ_LT(cb->s_ralo, si->si_alo)) {
405: sppstat.spps_rcvwinupd++;
406: sppstat.spps_rcvdupack--;
407: }
408: cb->s_ralo = si->si_alo;
409: cb->s_swl1 = si->si_seq;
410: cb->s_swl2 = si->si_ack;
411: cb->s_swnd = (1 + si->si_alo - si->si_ack);
412: if (cb->s_swnd > cb->s_smxw)
413: cb->s_smxw = cb->s_swnd;
414: cb->s_flags |= SF_WIN;
415: }
416: /*
417: * If this packet number is higher than that which
418: * we have allocated refuse it, unless urgent
419: */
420: if (SSEQ_GT(si->si_seq, cb->s_alo)) {
421: if (si->si_cc & SP_SP) {
422: sppstat.spps_rcvwinprobe++;
423: return (1);
424: } else
425: sppstat.spps_rcvpackafterwin++;
426: if (si->si_cc & SP_OB) {
427: if (SSEQ_GT(si->si_seq, cb->s_alo + 60)) {
428: ns_error(dtom(si), NS_ERR_FULLUP, 0);
429: return (0);
430: } /* else queue this packet; */
431: } else {
432: /*register struct socket *so = cb->s_nspcb->nsp_socket;
433: if (so->so_state && SS_NOFDREF) {
434: ns_error(dtom(si), NS_ERR_NOSOCK, 0);
435: (void)spp_close(cb);
436: } else
437: would crash system*/
438: spp_istat.notyet++;
439: ns_error(dtom(si), NS_ERR_FULLUP, 0);
440: return (0);
441: }
442: }
443: /*
444: * If this is a system packet, we don't need to
445: * queue it up, and won't update acknowledge #
446: */
447: if (si->si_cc & SP_SP) {
448: return (1);
449: }
450: /*
451: * We have already seen this packet, so drop.
452: */
453: if (SSEQ_LT(si->si_seq, cb->s_ack)) {
454: spp_istat.bdreas++;
455: sppstat.spps_rcvduppack++;
456: if (si->si_seq == cb->s_ack - 1)
457: spp_istat.lstdup++;
458: return (1);
459: }
460: /*
461: * Loop through all packets queued up to insert in
462: * appropriate sequence.
463: */
464: for (q = cb->s_q.si_next; q!=&cb->s_q; q = q->si_next) {
465: if (si->si_seq == SI(q)->si_seq) {
466: sppstat.spps_rcvduppack++;
467: return (1);
468: }
469: if (SSEQ_LT(si->si_seq, SI(q)->si_seq)) {
470: sppstat.spps_rcvoopack++;
471: break;
472: }
473: }
474: insque(si, q->si_prev);
475: /*
476: * If this packet is urgent, inform process
477: */
478: if (si->si_cc & SP_OB) {
479: cb->s_iobc = ((char *)si)[1 + sizeof(*si)];
480: sohasoutofband(so);
481: cb->s_oobflags |= SF_IOOB;
482: }
483: present:
484: #define SPINC sizeof(struct sphdr)
485: /*
486: * Loop through all packets queued up to update acknowledge
487: * number, and present all acknowledged data to user;
488: * If in packet interface mode, show packet headers.
489: */
490: for (q = cb->s_q.si_next; q!=&cb->s_q; q = q->si_next) {
491: if (SI(q)->si_seq == cb->s_ack) {
492: cb->s_ack++;
493: m = dtom(q);
494: if (SI(q)->si_cc & SP_OB) {
495: cb->s_oobflags &= ~SF_IOOB;
496: if (so->so_rcv.sb_cc)
497: so->so_oobmark = so->so_rcv.sb_cc;
498: else
499: so->so_state |= SS_RCVATMARK;
500: }
501: q = q->si_prev;
502: remque(q->si_next);
503: wakeup = 1;
504: sppstat.spps_rcvpack++;
505: if (packetp) {
506: sbappendrecord(&so->so_rcv, m);
507: } else {
508: cb->s_rhdr = *mtod(m, struct sphdr *);
509: m->m_off += SPINC;
510: m->m_len -= SPINC;
511: sbappend(&so->so_rcv, m);
512: }
513: } else
514: break;
515: }
516: if (wakeup) sorwakeup(so);
517: return (0);
518: }
519:
520: spp_ctlinput(cmd, arg)
521: int cmd;
522: caddr_t arg;
523: {
524: struct ns_addr *na;
525: extern u_char nsctlerrmap[];
526: extern spp_abort(), spp_quench();
527: extern struct nspcb *idp_drop();
528: struct ns_errp *errp;
529: struct nspcb *nsp;
530: struct sockaddr_ns *sns;
531: int type;
532:
533: if (cmd < 0 || cmd > PRC_NCMDS)
534: return;
535: type = NS_ERR_UNREACH_HOST;
536:
537: switch (cmd) {
538:
539: case PRC_ROUTEDEAD:
540: return;
541:
542: case PRC_IFDOWN:
543: case PRC_HOSTDEAD:
544: case PRC_HOSTUNREACH:
545: sns = (struct sockaddr_ns *)arg;
546: if (sns->sns_family != AF_NS)
547: return;
548: na = &sns->sns_addr;
549: break;
550:
551: default:
552: errp = (struct ns_errp *)arg;
553: na = &errp->ns_err_idp.idp_dna;
554: type = errp->ns_err_num;
555: type = ntohs((u_short)type);
556: }
557: switch (type) {
558:
559: case NS_ERR_UNREACH_HOST:
560: ns_pcbnotify(na, (int)nsctlerrmap[cmd], spp_abort, (long) 0);
561: break;
562:
563: case NS_ERR_TOO_BIG:
564: case NS_ERR_NOSOCK:
565: nsp = ns_pcblookup(na, errp->ns_err_idp.idp_sna.x_port,
566: NS_WILDCARD);
567: if (nsp) {
568: if(nsp->nsp_pcb)
569: (void) spp_drop((struct sppcb *)nsp->nsp_pcb,
570: (int)nsctlerrmap[cmd]);
571: else
572: (void) idp_drop(nsp, (int)nsctlerrmap[cmd]);
573: }
574: break;
575:
576: case NS_ERR_FULLUP:
577: ns_pcbnotify(na, 0, spp_quench, (long) 0);
578: }
579: }
580: /*
581: * When a source quench is received, close congestion window
582: * to one packet. We will gradually open it again as we proceed.
583: */
584: spp_quench(nsp)
585: struct nspcb *nsp;
586: {
587: struct sppcb *cb = nstosppcb(nsp);
588:
589: if (cb)
590: cb->s_cwnd = CUNIT;
591: }
592:
593: #ifdef notdef
594: int
595: spp_fixmtu(nsp)
596: register struct nspcb *nsp;
597: {
598: register struct sppcb *cb = (struct sppcb *)(nsp->nsp_pcb);
599: register struct mbuf *m;
600: register struct spidp *si;
601: struct ns_errp *ep;
602: struct sockbuf *sb;
603: int badseq, len;
604: struct mbuf *firstbad, *m0;
605:
606: if (cb) {
607: /*
608: * The notification that we have sent
609: * too much is bad news -- we will
610: * have to go through queued up so far
611: * splitting ones which are too big and
612: * reassigning sequence numbers and checksums.
613: * we should then retransmit all packets from
614: * one above the offending packet to the last one
615: * we had sent (or our allocation)
616: * then the offending one so that the any queued
617: * data at our destination will be discarded.
618: */
619: ep = (struct ns_errp *)nsp->nsp_notify_param;
620: sb = &nsp->nsp_socket->so_snd;
621: cb->s_mtu = ep->ns_err_param;
622: badseq = SI(&ep->ns_err_idp)->si_seq;
623: for (m = sb->sb_mb; m; m = m->m_act) {
624: si = mtod(m, struct spidp *);
625: if (si->si_seq == badseq)
626: break;
627: }
628: if (m == 0) return;
629: firstbad = m;
630: /*for (;;) {*/
631: /* calculate length */
632: for (m0 = m, len = 0; m ; m = m->m_next)
633: len += m->m_len;
634: if (len > cb->s_mtu) {
635: }
636: /* FINISH THIS
637: } */
638: }
639: }
640: #endif
641:
642: spp_output(cb, m0)
643: register struct sppcb *cb;
644: struct mbuf *m0;
645: {
646: struct socket *so = cb->s_nspcb->nsp_socket;
647: register struct mbuf *m;
648: register struct spidp *si = (struct spidp *) 0;
649: register struct sockbuf *sb = &so->so_snd;
650: int len = 0, win, rcv_win;
651: short span, off;
652: u_short alo;
653: int error = 0, idle, sendalot;
654: struct mbuf *mprev;
655: extern int idpcksum;
656:
657: if (m0) {
658: int mtu = cb->s_mtu;
659: int datalen;
660: /*
661: * Make sure that packet isn't too big.
662: */
663: for (m = m0; m ; m = m->m_next) {
664: mprev = m;
665: len += m->m_len;
666: }
667: datalen = (cb->s_flags & SF_HO) ?
668: len - sizeof (struct sphdr) : len;
669: if (datalen > mtu) {
670: if (cb->s_flags & SF_PI) {
671: m_freem(m0);
672: return (EMSGSIZE);
673: } else {
674: int oldEM = cb->s_cc & SP_EM;
675:
676: cb->s_cc &= ~SP_EM;
677: while (len > mtu) {
678: m = m_copy(m0, 0, mtu);
679: if (m == NULL) {
680: error = ENOBUFS;
681: goto bad_copy;
682: }
683: error = spp_output(cb, m);
684: if (error) {
685: bad_copy:
686: cb->s_cc |= oldEM;
687: m_freem(m0);
688: return(error);
689: }
690: m_adj(m0, mtu);
691: len -= mtu;
692: }
693: cb->s_cc |= oldEM;
694: }
695: }
696: /*
697: * Force length even, by adding a "garbage byte" if
698: * necessary.
699: */
700: if (len & 1) {
701: m = mprev;
702: if (m->m_len + m->m_off < MMAXOFF)
703: m->m_len++;
704: else {
705: struct mbuf *m1 = m_get(M_DONTWAIT, MT_DATA);
706:
707: if (m1 == 0) {
708: m_freem(m0);
709: return (ENOBUFS);
710: }
711: m1->m_len = 1;
712: m1->m_off = MMAXOFF - 1;
713: m->m_next = m1;
714: }
715: }
716: m = m_get(M_DONTWAIT, MT_HEADER);
717: if (m == 0) {
718: m_freem(m0);
719: return (ENOBUFS);
720: }
721: /*
722: * Fill in mbuf with extended SP header
723: * and addresses and length put into network format.
724: * Long align so prepended ip headers will work on Gould.
725: */
726: m->m_off = MMAXOFF - sizeof (struct spidp) - 2;
727: m->m_len = sizeof (struct spidp);
728: m->m_next = m0;
729: si = mtod(m, struct spidp *);
730: si->si_i = *cb->s_idp;
731: si->si_s = cb->s_shdr;
732: if ((cb->s_flags & SF_PI) && (cb->s_flags & SF_HO)) {
733: register struct sphdr *sh;
734: if (m0->m_len < sizeof (*sh)) {
735: if((m0 = m_pullup(m0, sizeof(*sh))) == NULL) {
736: (void) m_free(m);
737: m_freem(m0);
738: return (EINVAL);
739: }
740: m->m_next = m0;
741: }
742: sh = mtod(m0, struct sphdr *);
743: si->si_dt = sh->sp_dt;
744: si->si_cc |= sh->sp_cc & SP_EM;
745: m0->m_len -= sizeof (*sh);
746: m0->m_off += sizeof (*sh);
747: len -= sizeof (*sh);
748: }
749: len += sizeof(*si);
750: if (cb->s_oobflags & SF_SOOB) {
751: /*
752: * Per jqj@cornell:
753: * make sure OB packets convey exactly 1 byte.
754: * If the packet is 1 byte or larger, we
755: * have already guaranted there to be at least
756: * one garbage byte for the checksum, and
757: * extra bytes shouldn't hurt!
758: */
759: if (len > sizeof(*si)) {
760: si->si_cc |= SP_OB;
761: len = (1 + sizeof(*si));
762: }
763: }
764: si->si_len = htons((u_short)len);
765: /*
766: * queue stuff up for output
767: */
768: sbappendrecord(sb, m);
769: cb->s_seq++;
770: }
771: idle = (cb->s_smax == (cb->s_rack - 1));
772: again:
773: sendalot = 0;
774: off = cb->s_snxt - cb->s_rack;
775: win = MIN(cb->s_swnd, (cb->s_cwnd/CUNIT));
776:
777: /*
778: * If in persist timeout with window of 0, send a probe.
779: * Otherwise, if window is small but nonzero
780: * and timer expired, send what we can and go into
781: * transmit state.
782: */
783: if (cb->s_force == 1 + SPPT_PERSIST) {
784: if (win != 0) {
785: cb->s_timer[SPPT_PERSIST] = 0;
786: cb->s_rxtshift = 0;
787: }
788: }
789: span = cb->s_seq - cb->s_rack;
790: len = MIN(span, win) - off;
791:
792: if (len < 0) {
793: /*
794: * Window shrank after we went into it.
795: * If window shrank to 0, cancel pending
796: * restransmission and pull s_snxt back
797: * to (closed) window. We will enter persist
798: * state below. If the widndow didn't close completely,
799: * just wait for an ACK.
800: */
801: len = 0;
802: if (win == 0) {
803: cb->s_timer[SPPT_REXMT] = 0;
804: cb->s_snxt = cb->s_rack;
805: }
806: }
807: if (len > 1)
808: sendalot = 1;
809: rcv_win = sbspace(&so->so_rcv);
810:
811: /*
812: * Send if we owe peer an ACK.
813: */
814: if (cb->s_oobflags & SF_SOOB) {
815: /*
816: * must transmit this out of band packet
817: */
818: cb->s_oobflags &= ~ SF_SOOB;
819: sendalot = 1;
820: sppstat.spps_sndurg++;
821: goto found;
822: }
823: if (cb->s_flags & SF_ACKNOW)
824: goto send;
825: if (cb->s_state < TCPS_ESTABLISHED)
826: goto send;
827: /*
828: * Silly window can't happen in spp.
829: * Code from tcp deleted.
830: */
831: if (len)
832: goto send;
833: /*
834: * Compare available window to amount of window
835: * known to peer (as advertised window less
836: * next expected input.) If the difference is at least two
837: * packets or at least 35% of the mximum possible window,
838: * then want to send a window update to peer.
839: */
840: if (rcv_win > 0) {
841: u_short delta = 1 + cb->s_alo - cb->s_ack;
842: int adv = rcv_win - (delta * cb->s_mtu);
843:
844: if ((so->so_rcv.sb_cc == 0 && adv >= (2 * cb->s_mtu)) ||
845: (100 * adv / so->so_rcv.sb_hiwat >= 35)) {
846: sppstat.spps_sndwinup++;
847: cb->s_flags |= SF_ACKNOW;
848: goto send;
849: }
850:
851: }
852: /*
853: * Many comments from tcp_output.c are appropriate here
854: * including . . .
855: * If send window is too small, there is data to transmit, and no
856: * retransmit or persist is pending, then go to persist state.
857: * If nothing happens soon, send when timer expires:
858: * if window is nonzero, transmit what we can,
859: * otherwise send a probe.
860: */
861: if (so->so_snd.sb_cc && cb->s_timer[SPPT_REXMT] == 0 &&
862: cb->s_timer[SPPT_PERSIST] == 0) {
863: cb->s_rxtshift = 0;
864: spp_setpersist(cb);
865: }
866: /*
867: * No reason to send a packet, just return.
868: */
869: cb->s_outx = 1;
870: return (0);
871:
872: send:
873: /*
874: * Find requested packet.
875: */
876: si = 0;
877: if (len > 0) {
878: cb->s_want = cb->s_snxt;
879: for (m = sb->sb_mb; m; m = m->m_act) {
880: si = mtod(m, struct spidp *);
881: if (SSEQ_LEQ(cb->s_snxt, si->si_seq))
882: break;
883: }
884: found:
885: if (si) {
886: if (si->si_seq == cb->s_snxt)
887: cb->s_snxt++;
888: else
889: sppstat.spps_sndvoid++, si = 0;
890: }
891: }
892: /*
893: * update window
894: */
895: if (rcv_win < 0)
896: rcv_win = 0;
897: alo = cb->s_ack - 1 + (rcv_win / ((short)cb->s_mtu));
898: if (SSEQ_LT(alo, cb->s_alo))
899: alo = cb->s_alo;
900:
901: if (si) {
902: /*
903: * must make a copy of this packet for
904: * idp_output to monkey with
905: */
906: m = m_copy(dtom(si), 0, (int)M_COPYALL);
907: if (m == NULL) {
908: return (ENOBUFS);
909: }
910: m0 = m;
911: si = mtod(m, struct spidp *);
912: if (SSEQ_LT(si->si_seq, cb->s_smax))
913: sppstat.spps_sndrexmitpack++;
914: else
915: sppstat.spps_sndpack++;
916: } else if (cb->s_force || cb->s_flags & SF_ACKNOW) {
917: /*
918: * Must send an acknowledgement or a probe
919: */
920: if (cb->s_force)
921: sppstat.spps_sndprobe++;
922: if (cb->s_flags & SF_ACKNOW)
923: sppstat.spps_sndacks++;
924: m = m_get(M_DONTWAIT, MT_HEADER);
925: if (m == 0) {
926: return (ENOBUFS);
927: }
928: /*
929: * Fill in mbuf with extended SP header
930: * and addresses and length put into network format.
931: * Allign beginning of packet to long to prepend
932: * ifp's on loopback, or NSIP encaspulation for fussy cpu's.
933: */
934: m->m_off = MMAXOFF - sizeof (struct spidp) - 2;
935: m->m_len = sizeof (*si);
936: m->m_next = 0;
937: si = mtod(m, struct spidp *);
938: si->si_i = *cb->s_idp;
939: si->si_s = cb->s_shdr;
940: si->si_seq = cb->s_smax + 1;
941: si->si_len = htons(sizeof (*si));
942: si->si_cc |= SP_SP;
943: } else {
944: cb->s_outx = 3;
945: if (so->so_options & SO_DEBUG || traceallspps)
946: spp_trace(SA_OUTPUT, cb->s_state, cb, si, 0);
947: return (0);
948: }
949: /*
950: * Stuff checksum and output datagram.
951: */
952: if ((si->si_cc & SP_SP) == 0) {
953: if (cb->s_force != (1 + SPPT_PERSIST) ||
954: cb->s_timer[SPPT_PERSIST] == 0) {
955: /*
956: * If this is a new packet and we are not currently
957: * timing anything, time this one.
958: */
959: if (SSEQ_LT(cb->s_smax, si->si_seq)) {
960: cb->s_smax = si->si_seq;
961: if (cb->s_rtt == 0) {
962: sppstat.spps_segstimed++;
963: cb->s_rtseq = si->si_seq;
964: cb->s_rtt = 1;
965: }
966: }
967: /*
968: * Set rexmt timer if not currently set,
969: * Initial value for retransmit timer is smoothed
970: * round-trip time + 2 * round-trip time variance.
971: * Initialize shift counter which is used for backoff
972: * of retransmit time.
973: */
974: if (cb->s_timer[SPPT_REXMT] == 0 &&
975: cb->s_snxt != cb->s_rack) {
976: cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
977: if (cb->s_timer[SPPT_PERSIST]) {
978: cb->s_timer[SPPT_PERSIST] = 0;
979: cb->s_rxtshift = 0;
980: }
981: }
982: } else if (SSEQ_LT(cb->s_smax, si->si_seq)) {
983: cb->s_smax = si->si_seq;
984: }
985: } else if (cb->s_state < TCPS_ESTABLISHED) {
986: if (cb->s_rtt == 0)
987: cb->s_rtt = 1; /* Time initial handshake */
988: if (cb->s_timer[SPPT_REXMT] == 0)
989: cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
990: }
991: {
992: /*
993: * Do not request acks when we ack their data packets or
994: * when we do a gratuitous window update.
995: */
996: if (((si->si_cc & SP_SP) == 0) || cb->s_force)
997: si->si_cc |= SP_SA;
998: si->si_seq = htons(si->si_seq);
999: si->si_alo = htons(alo);
1000: si->si_ack = htons(cb->s_ack);
1001:
1002: if (idpcksum) {
1003: si->si_sum = 0;
1004: len = ntohs(si->si_len);
1005: if (len & 1)
1006: len++;
1007: si->si_sum = ns_cksum(dtom(si), len);
1008: } else
1009: si->si_sum = 0xffff;
1010:
1011: cb->s_outx = 4;
1012: if (so->so_options & SO_DEBUG || traceallspps)
1013: spp_trace(SA_OUTPUT, cb->s_state, cb, si, 0);
1014:
1015: if (so->so_options & SO_DONTROUTE)
1016: error = ns_output(m, (struct route *)0, NS_ROUTETOIF);
1017: else
1018: error = ns_output(m, &cb->s_nspcb->nsp_route, 0);
1019: }
1020: if (error) {
1021: return (error);
1022: }
1023: sppstat.spps_sndtotal++;
1024: /*
1025: * Data sent (as far as we can tell).
1026: * If this advertises a larger window than any other segment,
1027: * then remember the size of the advertized window.
1028: * Any pending ACK has now been sent.
1029: */
1030: cb->s_force = 0;
1031: cb->s_flags &= ~(SF_ACKNOW|SF_DELACK);
1032: if (SSEQ_GT(alo, cb->s_alo))
1033: cb->s_alo = alo;
1034: if (sendalot)
1035: goto again;
1036: cb->s_outx = 5;
1037: return (0);
1038: }
1039:
1040: int spp_do_persist_panics = 0;
1041:
1042: spp_setpersist(cb)
1043: register struct sppcb *cb;
1044: {
1045: register t = ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1;
1046: extern int spp_backoff[];
1047:
1048: if (cb->s_timer[SPPT_REXMT] && spp_do_persist_panics)
1049: panic("spp_output REXMT");
1050: /*
1051: * Start/restart persistance timer.
1052: */
1053: SPPT_RANGESET(cb->s_timer[SPPT_PERSIST],
1054: t*spp_backoff[cb->s_rxtshift],
1055: SPPTV_PERSMIN, SPPTV_PERSMAX);
1056: if (cb->s_rxtshift < SPP_MAXRXTSHIFT)
1057: cb->s_rxtshift++;
1058: }
1059: /*ARGSUSED*/
1060: spp_ctloutput(req, so, level, name, value)
1061: int req;
1062: struct socket *so;
1063: int name;
1064: struct mbuf **value;
1065: {
1066: register struct mbuf *m;
1067: struct nspcb *nsp = sotonspcb(so);
1068: register struct sppcb *cb;
1069: int mask, error = 0;
1070:
1071: if (level != NSPROTO_SPP) {
1072: /* This will have to be changed when we do more general
1073: stacking of protocols */
1074: return (idp_ctloutput(req, so, level, name, value));
1075: }
1076: if (nsp == NULL) {
1077: error = EINVAL;
1078: goto release;
1079: } else
1080: cb = nstosppcb(nsp);
1081:
1082: switch (req) {
1083:
1084: case PRCO_GETOPT:
1085: if (value == NULL)
1086: return (EINVAL);
1087: m = m_get(M_DONTWAIT, MT_DATA);
1088: if (m == NULL)
1089: return (ENOBUFS);
1090: switch (name) {
1091:
1092: case :
1093: mask = SF_HI;
1094: goto get_flags;
1095:
1096: case :
1097: mask = SF_HO;
1098: get_flags:
1099: m->m_len = sizeof(short);
1100: m->m_off = MMAXOFF - sizeof(short);
1101: *mtod(m, short *) = cb->s_flags & mask;
1102: break;
1103:
1104: case SO_MTU:
1105: m->m_len = sizeof(u_short);
1106: m->m_off = MMAXOFF - sizeof(short);
1107: *mtod(m, short *) = cb->s_mtu;
1108: break;
1109:
1110: case :
1111: m->m_len = sizeof(struct sphdr);
1112: m->m_off = MMAXOFF - sizeof(struct sphdr);
1113: *mtod(m, struct sphdr *) = cb->s_rhdr;
1114: break;
1115:
1116: case :
1117: m->m_len = sizeof(struct spidp);
1118: m->m_off = MMAXOFF - sizeof(struct sphdr);
1119: *mtod(m, struct sphdr *) = cb->s_shdr;
1120: break;
1121:
1122: default:
1123: error = EINVAL;
1124: }
1125: *value = m;
1126: break;
1127:
1128: case PRCO_SETOPT:
1129: if (value == 0 || *value == 0) {
1130: error = EINVAL;
1131: break;
1132: }
1133: switch (name) {
1134: int *ok;
1135:
1136: case SO_HEADERS_ON_INPUT:
1137: mask = SF_HI;
1138: goto set_head;
1139:
1140: case SO_HEADERS_ON_OUTPUT:
1141: mask = SF_HO;
1142: set_head:
1143: if (cb->s_flags & SF_PI) {
1144: ok = mtod(*value, int *);
1145: if (*ok)
1146: cb->s_flags |= mask;
1147: else
1148: cb->s_flags &= ~mask;
1149: } else error = EINVAL;
1150: break;
1151:
1152: case SO_MTU:
1153: cb->s_mtu = *(mtod(*value, u_short *));
1154: break;
1155:
1156: case SO_DEFAULT_HEADERS:
1157: {
1158: register struct sphdr *sp
1159: = mtod(*value, struct sphdr *);
1160: cb->s_dt = sp->sp_dt;
1161: cb->s_cc = sp->sp_cc & SP_EM;
1162: }
1163: break;
1164:
1165: default:
1166: error = EINVAL;
1167: }
1168: m_freem(*value);
1169: break;
1170: }
1171: release:
1172: return (error);
1173: }
1174:
1175: /*ARGSUSED*/
1176: spp_usrreq(so, req, m, nam, rights)
1177: struct socket *so;
1178: int req;
1179: struct mbuf *m, *nam, *rights;
1180: {
1181: struct nspcb *nsp = sotonspcb(so);
1182: register struct sppcb *cb;
1183: int s = splnet();
1184: int error = 0, ostate;
1185: struct mbuf *mm;
1186: register struct sockbuf *sb;
1187:
1188: if (req == PRU_CONTROL)
1189: return (ns_control(so, (int)m, (caddr_t)nam,
1190: (struct ifnet *)rights));
1191: if (rights && rights->m_len) {
1192: error = EINVAL;
1193: goto release;
1194: }
1195: if (nsp == NULL) {
1196: if (req != PRU_ATTACH) {
1197: error = EINVAL;
1198: goto release;
1199: }
1200: } else
1201: cb = nstosppcb(nsp);
1202:
1203: ostate = cb ? cb->s_state : 0;
1204:
1205: switch (req) {
1206:
1207: case PRU_ATTACH:
1208: if (nsp != NULL) {
1209: error = EISCONN;
1210: break;
1211: }
1212: error = ns_pcballoc(so, &nspcb);
1213: if (error)
1214: break;
1215: error = soreserve(so, 3072, 3072);
1216: if (error)
1217: break;
1218: nsp = sotonspcb(so);
1219:
1220: mm = m_getclr(M_DONTWAIT, MT_PCB);
1221: sb = &so->so_snd;
1222:
1223: if (mm == NULL) {
1224: error = ENOBUFS;
1225: break;
1226: }
1227: cb = mtod(mm, struct sppcb *);
1228: mm = m_getclr(M_DONTWAIT, MT_HEADER);
1229: if (mm == NULL) {
1230: m_free(dtom(m));
1231: error = ENOBUFS;
1232: break;
1233: }
1234: cb->s_idp = mtod(mm, struct idp *);
1235: cb->s_state = TCPS_LISTEN;
1236: cb->s_smax = -1;
1237: cb->s_swl1 = -1;
1238: cb->s_q.si_next = cb->s_q.si_prev = &cb->s_q;
1239: cb->s_nspcb = nsp;
1240: cb->s_mtu = 576 - sizeof (struct spidp);
1241: cb->s_cwnd = sbspace(sb) * CUNIT / cb->s_mtu;
1242: cb->s_ssthresh = cb->s_cwnd;
1243: cb->s_cwmx = sb->sb_mbmax * CUNIT /
1244: (2 * sizeof (struct spidp));
1245: /* Above is recomputed when connecting to account
1246: for changed buffering or mtu's */
1247: cb->s_rtt = SPPTV_SRTTBASE;
1248: cb->s_rttvar = SPPTV_SRTTDFLT << 2;
1249: SPPT_RANGESET(cb->s_rxtcur,
1250: ((SPPTV_SRTTBASE >> 2) + (SPPTV_SRTTDFLT << 2)) >> 1,
1251: SPPTV_MIN, SPPTV_REXMTMAX);
1252: nsp->nsp_pcb = (caddr_t) cb;
1253: break;
1254:
1255: case PRU_DETACH:
1256: if (nsp == NULL) {
1257: error = ENOTCONN;
1258: break;
1259: }
1260: if (cb->s_state > TCPS_LISTEN)
1261: cb = spp_disconnect(cb);
1262: else
1263: cb = spp_close(cb);
1264: break;
1265:
1266: case PRU_BIND:
1267: error = ns_pcbbind(nsp, nam);
1268: break;
1269:
1270: case PRU_LISTEN:
1271: if (nsp->nsp_lport == 0)
1272: error = ns_pcbbind(nsp, (struct mbuf *)0);
1273: if (error == 0)
1274: cb->s_state = TCPS_LISTEN;
1275: break;
1276:
1277: /*
1278: * Initiate connection to peer.
1279: * Enter SYN_SENT state, and mark socket as connecting.
1280: * Start keep-alive timer, setup prototype header,
1281: * Send initial system packet requesting connection.
1282: */
1283: case PRU_CONNECT:
1284: if (nsp->nsp_lport == 0) {
1285: error = ns_pcbbind(nsp, (struct mbuf *)0);
1286: if (error)
1287: break;
1288: }
1289: error = ns_pcbconnect(nsp, nam);
1290: if (error)
1291: break;
1292: soisconnecting(so);
1293: sppstat.spps_connattempt++;
1294: cb->s_state = TCPS_SYN_SENT;
1295: cb->s_did = 0;
1296: spp_template(cb);
1297: cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
1298: cb->s_force = 1 + SPPTV_KEEP;
1299: /*
1300: * Other party is required to respond to
1301: * the port I send from, but he is not
1302: * required to answer from where I am sending to,
1303: * so allow wildcarding.
1304: * original port I am sending to is still saved in
1305: * cb->s_dport.
1306: */
1307: nsp->nsp_fport = 0;
1308: error = spp_output(cb, (struct mbuf *) 0);
1309: break;
1310:
1311: case PRU_CONNECT2:
1312: error = EOPNOTSUPP;
1313: break;
1314:
1315: /*
1316: * We may decide later to implement connection closing
1317: * handshaking at the spp level optionally.
1318: * here is the hook to do it:
1319: */
1320: case PRU_DISCONNECT:
1321: cb = spp_disconnect(cb);
1322: break;
1323:
1324: /*
1325: * Accept a connection. Essentially all the work is
1326: * done at higher levels; just return the address
1327: * of the peer, storing through addr.
1328: */
1329: case PRU_ACCEPT: {
1330: struct sockaddr_ns *sns = mtod(nam, struct sockaddr_ns *);
1331:
1332: nam->m_len = sizeof (struct sockaddr_ns);
1333: sns->sns_family = AF_NS;
1334: sns->sns_addr = nsp->nsp_faddr;
1335: break;
1336: }
1337:
1338: case PRU_SHUTDOWN:
1339: socantsendmore(so);
1340: cb = spp_usrclosed(cb);
1341: if (cb)
1342: error = spp_output(cb, (struct mbuf *) 0);
1343: break;
1344:
1345: /*
1346: * After a receive, possibly send acknowledgment
1347: * updating allocation.
1348: */
1349: case PRU_RCVD:
1350: cb->s_flags |= SF_RVD;
1351: (void) spp_output(cb, (struct mbuf *) 0);
1352: cb->s_flags &= ~SF_RVD;
1353: break;
1354:
1355: case PRU_ABORT:
1356: (void) spp_drop(cb, ECONNABORTED);
1357: break;
1358:
1359: case PRU_SENSE:
1360: case PRU_CONTROL:
1361: m = NULL;
1362: error = EOPNOTSUPP;
1363: break;
1364:
1365: case PRU_RCVOOB:
1366: if ((cb->s_oobflags & SF_IOOB) || so->so_oobmark ||
1367: (so->so_state & SS_RCVATMARK)) {
1368: m->m_len = 1;
1369: *mtod(m, caddr_t) = cb->s_iobc;
1370: break;
1371: }
1372: error = EINVAL;
1373: break;
1374:
1375: case PRU_SENDOOB:
1376: if (sbspace(&so->so_snd) < -512) {
1377: error = ENOBUFS;
1378: break;
1379: }
1380: cb->s_oobflags |= SF_SOOB;
1381: /* fall into */
1382: case PRU_SEND:
1383: error = spp_output(cb, m);
1384: m = NULL;
1385: break;
1386:
1387: case PRU_SOCKADDR:
1388: ns_setsockaddr(nsp, nam);
1389: break;
1390:
1391: case PRU_PEERADDR:
1392: ns_setpeeraddr(nsp, nam);
1393: break;
1394:
1395: case PRU_SLOWTIMO:
1396: cb = spp_timers(cb, (int)nam);
1397: req |= ((int)nam) << 8;
1398: break;
1399:
1400: case PRU_FASTTIMO:
1401: case PRU_PROTORCV:
1402: case PRU_PROTOSEND:
1403: error = EOPNOTSUPP;
1404: break;
1405:
1406: default:
1407: panic("sp_usrreq");
1408: }
1409: if (cb && (so->so_options & SO_DEBUG || traceallspps))
1410: spp_trace(SA_USER, (u_char)ostate, cb, (struct spidp *)0, req);
1411: release:
1412: if (m != NULL)
1413: m_freem(m);
1414: splx(s);
1415: return (error);
1416: }
1417:
1418: spp_usrreq_sp(so, req, m, nam, rights)
1419: struct socket *so;
1420: int req;
1421: struct mbuf *m, *nam, *rights;
1422: {
1423: int error = spp_usrreq(so, req, m, nam, rights);
1424:
1425: if (req == PRU_ATTACH && error == 0) {
1426: struct nspcb *nsp = sotonspcb(so);
1427: ((struct sppcb *)nsp->nsp_pcb)->s_flags |=
1428: (SF_HI | SF_HO | SF_PI);
1429: }
1430: return (error);
1431: }
1432:
1433: /*
1434: * Create template to be used to send spp packets on a connection.
1435: * Called after host entry created, fills
1436: * in a skeletal spp header (choosing connection id),
1437: * minimizing the amount of work necessary when the connection is used.
1438: */
1439: spp_template(cb)
1440: register struct sppcb *cb;
1441: {
1442: register struct nspcb *nsp = cb->s_nspcb;
1443: register struct idp *idp = cb->s_idp;
1444: register struct sockbuf *sb = &(nsp->nsp_socket->so_snd);
1445:
1446: idp->idp_pt = NSPROTO_SPP;
1447: idp->idp_sna = nsp->nsp_laddr;
1448: idp->idp_dna = nsp->nsp_faddr;
1449: cb->s_sid = htons(spp_iss);
1450: spp_iss += SPP_ISSINCR/2;
1451: cb->s_alo = 1;
1452: cb->s_cwnd = (sbspace(sb) * CUNIT) / cb->s_mtu;
1453: cb->s_ssthresh = cb->s_cwnd; /* Try to expand fast to full complement
1454: of large packets */
1455: cb->s_cwmx = (sb->sb_mbmax * CUNIT) / (2 * sizeof(struct spidp));
1456: cb->s_cwmx = MAX(cb->s_cwmx, cb->s_cwnd);
1457: /* But allow for lots of little packets as well */
1458: }
1459:
1460: /*
1461: * Close a SPIP control block:
1462: * discard spp control block itself
1463: * discard ns protocol control block
1464: * wake up any sleepers
1465: */
1466: struct sppcb *
1467: spp_close(cb)
1468: register struct sppcb *cb;
1469: {
1470: register struct spidp_q *s;
1471: struct nspcb *nsp = cb->s_nspcb;
1472: struct socket *so = nsp->nsp_socket;
1473: register struct mbuf *m;
1474:
1475: s = cb->s_q.si_next;
1476: while (s != &(cb->s_q)) {
1477: s = s->si_next;
1478: m = dtom(s->si_prev);
1479: remque(s->si_prev);
1480: m_freem(m);
1481: }
1482: (void) m_free(dtom(cb->s_idp));
1483: (void) m_free(dtom(cb));
1484: nsp->nsp_pcb = 0;
1485: soisdisconnected(so);
1486: ns_pcbdetach(nsp);
1487: sppstat.spps_closed++;
1488: return ((struct sppcb *)0);
1489: }
1490: /*
1491: * Someday we may do level 3 handshaking
1492: * to close a connection or send a xerox style error.
1493: * For now, just close.
1494: */
1495: struct sppcb *
1496: spp_usrclosed(cb)
1497: register struct sppcb *cb;
1498: {
1499: return (spp_close(cb));
1500: }
1501: struct sppcb *
1502: spp_disconnect(cb)
1503: register struct sppcb *cb;
1504: {
1505: return (spp_close(cb));
1506: }
1507: /*
1508: * Drop connection, reporting
1509: * the specified error.
1510: */
1511: struct sppcb *
1512: spp_drop(cb, errno)
1513: register struct sppcb *cb;
1514: int errno;
1515: {
1516: struct socket *so = cb->s_nspcb->nsp_socket;
1517:
1518: /*
1519: * someday, in the xerox world
1520: * we will generate error protocol packets
1521: * announcing that the socket has gone away.
1522: */
1523: if (TCPS_HAVERCVDSYN(cb->s_state)) {
1524: sppstat.spps_drops++;
1525: cb->s_state = TCPS_CLOSED;
1526: /*(void) tcp_output(cb);*/
1527: } else
1528: sppstat.spps_conndrops++;
1529: so->so_error = errno;
1530: return (spp_close(cb));
1531: }
1532:
1533: spp_abort(nsp)
1534: struct nspcb *nsp;
1535: {
1536:
1537: (void) spp_close((struct sppcb *)nsp->nsp_pcb);
1538: }
1539:
1540: int spp_backoff[SPP_MAXRXTSHIFT+1] =
1541: { 1, 2, 4, 8, 16, 32, 64, 64, 64, 64, 64, 64, 64 };
1542: /*
1543: * Fast timeout routine for processing delayed acks
1544: */
1545: spp_fasttimo()
1546: {
1547: register struct nspcb *nsp;
1548: register struct sppcb *cb;
1549: int s = splnet();
1550:
1551: nsp = nspcb.nsp_next;
1552: if (nsp)
1553: for (; nsp != &nspcb; nsp = nsp->nsp_next)
1554: if ((cb = (struct sppcb *)nsp->nsp_pcb) &&
1555: (cb->s_flags & SF_DELACK)) {
1556: cb->s_flags &= ~SF_DELACK;
1557: cb->s_flags |= SF_ACKNOW;
1558: sppstat.spps_delack++;
1559: (void) spp_output(cb, (struct mbuf *) 0);
1560: }
1561: splx(s);
1562: }
1563:
1564: /*
1565: * spp protocol timeout routine called every 500 ms.
1566: * Updates the timers in all active pcb's and
1567: * causes finite state machine actions if timers expire.
1568: */
1569: spp_slowtimo()
1570: {
1571: register struct nspcb *ip, *ipnxt;
1572: register struct sppcb *cb;
1573: int s = splnet();
1574: register int i;
1575:
1576: /*
1577: * Search through tcb's and update active timers.
1578: */
1579: ip = nspcb.nsp_next;
1580: if (ip == 0) {
1581: splx(s);
1582: return;
1583: }
1584: while (ip != &nspcb) {
1585: cb = nstosppcb(ip);
1586: ipnxt = ip->nsp_next;
1587: if (cb == 0)
1588: goto tpgone;
1589: for (i = 0; i < SPPT_NTIMERS; i++) {
1590: if (cb->s_timer[i] && --cb->s_timer[i] == 0) {
1591: (void) spp_usrreq(cb->s_nspcb->nsp_socket,
1592: PRU_SLOWTIMO, (struct mbuf *)0,
1593: (struct mbuf *)i, (struct mbuf *)0);
1594: if (ipnxt->nsp_prev != ip)
1595: goto tpgone;
1596: }
1597: }
1598: cb->s_idle++;
1599: if (cb->s_rtt)
1600: cb->s_rtt++;
1601: tpgone:
1602: ip = ipnxt;
1603: }
1604: spp_iss += SPP_ISSINCR/PR_SLOWHZ; /* increment iss */
1605: splx(s);
1606: }
1607: /*
1608: * SPP timer processing.
1609: */
1610: struct sppcb *
1611: spp_timers(cb, timer)
1612: register struct sppcb *cb;
1613: int timer;
1614: {
1615: long rexmt;
1616: int win;
1617:
1618: cb->s_force = 1 + timer;
1619: switch (timer) {
1620:
1621: /*
1622: * 2 MSL timeout in shutdown went off. TCP deletes connection
1623: * control block.
1624: */
1625: case SPPT_2MSL:
1626: printf("spp: SPPT_2MSL went off for no reason\n");
1627: cb->s_timer[timer] = 0;
1628: break;
1629:
1630: /*
1631: * Retransmission timer went off. Message has not
1632: * been acked within retransmit interval. Back off
1633: * to a longer retransmit interval and retransmit one packet.
1634: */
1635: case SPPT_REXMT:
1636: if (++cb->s_rxtshift > SPP_MAXRXTSHIFT) {
1637: cb->s_rxtshift = SPP_MAXRXTSHIFT;
1638: sppstat.spps_timeoutdrop++;
1639: cb = spp_drop(cb, ETIMEDOUT);
1640: break;
1641: }
1642: sppstat.spps_rexmttimeo++;
1643: rexmt = ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1;
1644: rexmt *= spp_backoff[cb->s_rxtshift];
1645: SPPT_RANGESET(cb->s_rxtcur, rexmt, SPPTV_MIN, SPPTV_REXMTMAX);
1646: cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
1647: /*
1648: * If we have backed off fairly far, our srtt
1649: * estimate is probably bogus. Clobber it
1650: * so we'll take the next rtt measurement as our srtt;
1651: * move the current srtt into rttvar to keep the current
1652: * retransmit times until then.
1653: */
1654: if (cb->s_rxtshift > SPP_MAXRXTSHIFT / 4 ) {
1655: cb->s_rttvar += (cb->s_srtt >> 2);
1656: cb->s_srtt = 0;
1657: }
1658: cb->s_snxt = cb->s_rack;
1659: /*
1660: * If timing a packet, stop the timer.
1661: */
1662: cb->s_rtt = 0;
1663: /*
1664: * See very long discussion in tcp_timer.c about congestion
1665: * window and sstrhesh
1666: */
1667: win = MIN(cb->s_swnd, (cb->s_cwnd/CUNIT)) / 2;
1668: if (win < 2)
1669: win = 2;
1670: cb->s_cwnd = CUNIT;
1671: cb->s_ssthresh = win * CUNIT;
1672: (void) spp_output(cb, (struct mbuf *) 0);
1673: break;
1674:
1675: /*
1676: * Persistance timer into zero window.
1677: * Force a probe to be sent.
1678: */
1679: case SPPT_PERSIST:
1680: sppstat.spps_persisttimeo++;
1681: spp_setpersist(cb);
1682: (void) spp_output(cb, (struct mbuf *) 0);
1683: break;
1684:
1685: /*
1686: * Keep-alive timer went off; send something
1687: * or drop connection if idle for too long.
1688: */
1689: case SPPT_KEEP:
1690: sppstat.spps_keeptimeo++;
1691: if (cb->s_state < TCPS_ESTABLISHED)
1692: goto dropit;
1693: if (cb->s_nspcb->nsp_socket->so_options & SO_KEEPALIVE) {
1694: if (cb->s_idle >= SPPTV_MAXIDLE)
1695: goto dropit;
1696: sppstat.spps_keepprobe++;
1697: (void) spp_output(cb, (struct mbuf *) 0);
1698: } else
1699: cb->s_idle = 0;
1700: cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
1701: break;
1702: dropit:
1703: sppstat.spps_keepdrops++;
1704: cb = spp_drop(cb, ETIMEDOUT);
1705: break;
1706: }
1707: return (cb);
1708: }
1709: #ifndef lint
1710: int SppcbSize = sizeof (struct sppcb);
1711: int NspcbSize = sizeof (struct nspcb);
1712: #endif lint
1713: #endif